ОПРЕДЕЛЕНИЕ ПЛАТЕЖЕСПОСОБНОСТИ ЧЕЛОВЕКА НА ОСНОВЕ МОДЕЛЕЙ МАШИННОГО ОБУЧЕНИЯ
Ключевые слова:
Платежные системы, кредитный рейтинг, машинное обучение, искусственный интеллект, цифровая экономикаАннотация
В данном исследовании анализируются современные интеллектуальные системы, использующие модели машинного обучения для определения платежеспособности отдельного лица и повышения точности. В работе освещаются принципы работы традиционных систем кредитного рейтинга, платформ, созданных на основе технологий искусственного интеллекта, и внутренних моделей оценки, используемых в банках, а также преимущества и ограничения алгоритмов машинного обучения. Согласно результатам исследования, комплексное применение технологий искусственного интеллекта, машинного обучения и блокчейна позволит создать более стабильный, безопасный и эффективный финансовый сектор.
Библиографические ссылки
Hicham Sadok, Fadi Sakka &Mohammed El Hadi El Maknouzi.“Artificial intelligence and bank creditanalysis: A review”. Cogent Economics &Finance (2022), 10: 2023262.
J. B, J. A. K. R and Ganesh D. P. S., "Credit Card Fraud Detection with Unbalanced Real and Synthetic dataset using Machine Learning models," 2022 International Conference on Electronic Systems and Intelligent Computing (ICESIC), Chennai, India, 2022, pp. 73-78, doi: 10.1109/ICESIC53714.2022.9783529.
Bedi, P., Goyal, S. B., & Kumar, J. Basic structure of artificial intelligence: Arevolution in risk management and compliance. In 3rd International Conference on Intelligent Sustainable System (ICISS). Thootukudi, India: IEEE(2020).
Dusanov R.Q, Akhatov A.A., Methods for assessing credit risk using artificial intelligence models., republican scientific and practical conference on the topic "Mathematical analysis and its applications to modern mathematical physics".,october 18, 2025, 312-313.
Dusanov R.Q., Application of machine learning algorithms in assessing individual solvency and analysis of their effectiveness., Collection of reports of the Republican scientific and practical conference on "Problems of modern information, communication technologies and IT-educational implementation", April 25-26, 2025, 326-328.
Nazarov F.M. Increasing data reliability in the system based on distributed methods. International scientific and practical conference on artificial intelligence and digital educational technologies: practice, experience, problems and prospects. Samarkand state university. June 3-4, 2024 p. 151-154.
Dileep M. R., Navaneeth A. V. and Abhishek M., "A novel approach for credit card fraud detection using decision tree and random forest algorithms", 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), pp. 1025-1028, February 2021.
N. Faizullo, S. Sariyev and Y. Sherzodjon, "Analyzing the Effectiveness of Ensemble Methods in Solving Multi-Class Classification Problems," 2025 International Russian Smart Industry Conference (SmartIndustryCon), Sochi, Russian Federation, 2025, pp. 788-793, doi: 10.1109/SmartIndustryCon65166.2025.10986248.
F.M. Nazarov., R.Q. Dusanov. “Application of artificial intelligence and machine learning algorithms in determining a person’s solvency”., International scientific journal Science and Innovation, Volume 4, Issue 6 , June 2025,ISSN: 2181-3337 |.,147-158.
Nazarov F.M., Yarmatov Sh.Sh. Artificial intellectual mechanisms in control systems and their application. "Scientific journal Samarkand state university", No. 3(133). 2022. p. 96-105.
Rose J. D., Christalin Nelson S., H. S. G, Nivasan D. and Bansal R., “Credit Card Fraud Legal Advisor Tool Using Machine Learning,” 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon), Mysuru, India, 2022, pp. 1-5, doi: 10.1109/MysuruCon55714.2022.9972461.
S. Sariyev, I. Yalgoshev and M. Nuriddinova, "Traditional Methods and Modern Approaches Based on Ensemble Algorithms for Decision-Making in Diagnostics Using Medical Data," 2025 International Russian Automation Conference (RusAutoCon), Sochi, Russian Federation, 2025, pp. 971-975, doi: 10.1109/RusAutoCon65989.2025.11177423.
Akhatov A.R., Nazarov F.M., Rashidov A.E. Increasing data reliability by using big data parallelization mechanisms. International conference on information science and communication technologies. November 4, 5, 6. ICISCT 2021(IEEE), art. no. 9670387.DOI: 10.1109/ICISCT52966.2021.9670387.
S. Sariyev, G. Negmatova and A. Sayidkulov, "Preparation Datasets Based on Artificial Intelligence Models and Classification Algorithms," 2025 International Russian Automation Conference (RusAutoCon), Sochi, Russian Federation, 2025, pp. 260-266, https://doi.org/10.1109/RusAutoCon65989.2025.11177339
S. Akhatkulov, I. Yalgoshev and J. Haydarov, "Different Warmup and Annealing Strategies for ANN Models to Predict Air Quality Index," 2025 International Russian Automation Conference (RusAutoCon), Sochi, Russian Federation, 2025, pp. 491-496, doi: 10.1109/RusAutoCon65989.2025.11177428.
S. Akhatkulov, I. Yalgoshev and Z. Urinboyev, "Vehicle CO2 Emission Prediction Using Deep Learning and Ensemble Machine Learning Methods," 2025 International Russian Automation Conference (RusAutoCon), Sochi, Russian Federation, 2025, pp. 819-824, doi: 10.1109/RusAutoCon65989.2025.11177377.
S. Akhatkulov, I. Yalgoshev and J. Haydarov, "Different Warmup and Annealing Strategies for ANN Models to Predict Air Quality Index," 2025 International Russian Automation Conference (RusAutoCon), Sochi, Russian Federation, 2025, pp. 491-496, doi: 10.1109/RusAutoCon65989.2025.11177428.
Загрузки
Опубликован
Как цитировать
Лицензия
Copyright (c) 2025 Raxim Do'sanov

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
