Интеллектуальные алгоритмы оценки экономических показателей на основе моделей машинного обучения
Ключевые слова:
Искусственный интеллект, задача классификации, экономические показатели, машинное обучение, логистическая регрессия, дерево решений, k-NNАннотация
Ush tadqiqot sun'iy intellekt modellari asosida iqtisodiy ko'rinishlarni ishlab chiqishning aqlli algoritmlarini ishlab chiqarishga bag'ishlangan. iqtisodiy, iqtisodiy' iqtisodiy ko'rsatkichlar bo'yicha savdo talab va taklifni oqilona foydalanishga bag'ishlangan. Talab va taklif o'ziga xos nomutanosiblik sifatida qaraladigan mahsulot sotishdagi kechikishlarni prognoz qilish jarayoni diqqat bilan o'rganildi. Buning uchun muammo tasniflash muammosi sifatida shakllantiriladi va sun'iy intellektning mashinani o'rganish modellarini tuzatishlar taklif qiladi. iqtisodiy, iqtisodiy ko'rsatkichlarni amalga oshirish uchun, iqtisodiy regressiya, logistika qarorlari logistika va K-e yaqin qo'shnilar (K-NN) usuliga kuchli aqlli algoritmlar ishlab chiqarish. Taklif qilingan mahsulotlarning yukini ko'rgan tajribali taqdim etilgan.
Библиографические ссылки
Yang Z., Li D. “Application of Logistic Regression with Filter in Data Classification”, In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 3755–3759.
Ahmed Neloy A., Sadman Haque H.M., Ul Islam M. “Ensemble Learning Based Rental Apartment Price Prediction Model by Categorical Features Factoring,” In Proceedings of the 2019 11th International Conference on Machine Learning and Computing, Zhuhai, China, 22-24 February 2019; pp. 350-356.
Friedman J.H. “Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189-1232.
Gromping U. “Relative Importance for Linear Regression in R: The package relaimpo.” J. Stat. Softw. 2006,17, 27.
Ceh M., Kilibarda M., Lisec A., Bajat B. “Estimating the Performance of Random Forest versus Multiple Regression for Predicting Prices of the Apartments.” ISPRS Int. J. Geo-Inf. 2018, 7, 168.
Korobov M. “Explaining behavior of Machine Learning models with eli5 library.” In Proceedings of the EuroPython Congress 2017, Rimini, Italy, 9-16 July 2017.
Ho W.K.O., Tang B.-S., Wong, S.W. “Predicting property prices with machine learning algorithms.” J. Prop. Res. 2021, 38, 48-70.
Nazarov F.M., Yarmatov Sh.Sh. “Development of algorithms for predictive evaluation of investment projects based on machine learning,” Artificial Intelligence, Blockchain, Computing and Security Volume 2. eBook ISBN: 9781032684994, pages 681 – 685. 2024.
Chatterjee S., Simonoff J.S., “Handbook ofRegression Analysis; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2013, p. 240.
FM Nazarov, S Yarmatov, M Xamidov. Machine learning price prediction on green building prices. 2024 International Russian Smart Industry Conference (SmartIndustryCon), 906-911.
F Bolikulov, R Nasimov, A Rashidov, F Akhmedov, C Young-Im. Effective methods of categorical data encoding for artificial intelligence algorithms. Mathematics 12 (16), 2553
Pai P.-F., Wang W.-C. “Using Machine Learning Models and Actual Transaction Data for Predicting Real Estate Prices. Appl. Sci. 2020, 10, 5832.
Sangani D., Erickson K., Hasan M. A., “Predicting Zillow Estimation Error Using Linear Regression and Gradient Boosting,” 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Orlando, FL, USA, 2017, pp. 530-534, doi: 10.1109/MASS.2017.88.
Загрузки
Дополнительные файлы
Опубликован
Как цитировать
Лицензия
Copyright (c) 2025 Asliddin Sayidqulov, Fayzullo Nazarov

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.