Research Article Geometry-aware Analysis of Wheat Grain Hydration Prior to Milling
Keywords:
Grain, grain moisture,, grain characteristics, computer modeling, hydration kinetics, conditioning, diffusion modelsAbstract
This study analyzes geometry and short-time hydration of two wheat varieties from Uzbekistan, “Asr” and “Alekseevich.” Grain dimensions were measured by digital caliper, microstructure examined microscopically, and surface/volume reconstructed from 3D scans. Hydration kinetics were recorded gravimetrically at 5-min intervals for 30 min under 20–25 °C and 40–50 °C. “Asr” grains were larger and showed faster water uptake, with higher mass gain than “Alekseevich.” An ellipsoidal multi-layer diffusion model confirmed geometry-dependent moisture penetration. Results indicate that geometry-aware conditioning enhances millability and flour quality while minimizing repeated wetting–drying cycles.
References
. Singh, S., Nenavath, M. D., Raj, T., & Singh, V. (2024). Comparison of Indian corn with the US and South American commodity corn for wet milling starch yields. Industrial Crops and Products, 221, 119444. https://doi.org/10.1016/j.indcrop.2024.119444
. Hoang, T. N., Konvalina, P., Kopecký, M., Capouchová, I., Shim, S., & Hlásná Čepková, P. (2024). Assessing the quality and grain yield of winter wheat in the organic farming management under wheat–legume intercropping practice. Heliyon, 10(10), e31234. https://doi.org/10.1016/j.heliyon.2024.e31234
. Tian, Z., Yin, Y., Li, B., Zhong, K., Liu, X., Jiang, D., Cao, W., & Dai, T. (2025). Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation. Journal of Integrative Agriculture, 24(7), 2558–2574. https://doi.org/10.1016/j.jia.2024.01.032
. Wang, Y., Han, J., Zhang, T., Sun, M., Ren, H., Bo, C., Diao, Y., Ma, X., Wang, H., & Wang, X. (2024). Identification and fine mapping of a major QTL, qGPC4D, for grain protein content using wheat–Aegilops tauschii introgression lines. Journal of Integrative Agriculture. Advance online publication. https://doi.org/10.1016/j.jia.2024.07.029
. Hou, P., Gao, Q., Ren, Y., Yu, J., Gao, L., Liu, X., Jiang, D., Cao, W., Dai, T., & Tian, Z. (2024). Straw returning and night-warming improve grain yield and nitrogen use efficiency of winter wheat under rice–wheat rotation. Journal of Integrative Agriculture. Advance online publication. https://doi.org/10.1016/j.jia.2024.12.012
. Mahdavi, S., Arzani, A., Mirmohammady Maibody, S. A. M., & Kadivar, M. (2022). Grain and flour quality of wheat genotypes grown under heat stress. Saudi Journal of Biological Sciences, 29(10), 103417. https://doi.org/10.1016/j.sjbs.2022.103417
. Demuth, T., Betschart, J., & Nyström, L. (2020). Structural modifications to water-soluble wheat bran arabinoxylan through milling and extrusion. Carbohydrate Polymers, 240, 116328. https://doi.org/10.1016/j.carbpol.2020.116328
. Pernicová, N., Hlaváčová, M., Findurová, H., Čáslavský, J., Urban, O., Klem, K., & Trnka, M. (2023). Grain carbon isotopes indicate the ability of wheat plants to maintain enhanced intrinsic water-use efficiency even after short-term exposure to high temperatures and drought. Plant Physiology and Biochemistry, 205, 108155. https://doi.org/10.1016/j.plaphy.2023.108155
. Lin, Y., Simsek, S., & Bergholz, T. M. (2022). Impact of chlorinated water on pathogen inactivation during wheat tempering and resulting flour quality. Journal of Food Protection, 85(8), 1210–1220. https://doi.org/10.4315/JFP-22-076
. Kaur, N., Gasparre, N., & Rosell, C. M. (2024). Expanding the application of germinated wheat by examining the impact of varying alpha-amylase levels from grain to bread. Journal of Cereal Science, 120, 104059. https://doi.org/10.1016/j.jcs.2024.104059
. Luo, Y., Chen, Y., Xue, P., Wang, B., Kang, Y., Zhang, Y., Chen, D., Hong, Y., Wu, W., Liu, Q., Zhan, X., Lin, Y., Cheng, S., Zhang, Y., & Cao, L. (2025). Modulation of rice grain shape and appearance by the GS10-encoded long coiled-coil protein. The Crop Journal, 13(1), 158–169. https://doi.org/10.1016/j.cj.2024.11.002
. Li, X., Wu, M., Zhang, J., Xu, J., Diao, Y., & Li, Y. (2024). The OsCLV2s–OsCRN1 co-receptor regulates grain shape in rice. Journal of Genetics and Genomics, 51(7), 691–702. https://doi.org/10.1016/j.jgg.2024.03.011
. Lu, X., Li, F., Xiao, Y., Wang, F., Zhang, G., Deng, H., & Tang, W. (2023). Grain shape genes: Shaping the future of rice breeding. Rice Science, 30(5), 379–404. https://doi.org/10.1016/j.rsci.2023.03.014
. Zhang, H., Chen, J., Li, R., Wang, H., Dai, D., Liang, M., Wu, M., & Ma, L. (2024). Oriented generation of novel thermo-sensitive genic male sterile lines with improved grain shape and outcrossing rate in early-season rice. Rice Science, 31(2), 129–133. https://doi.org/10.1016/j.rsci.2023.11.006
. Zhang, X.-F., Yang, C.-Y., Lin, H.-X., Wang, J.-W., & Xue, H.-W. (2021). Rice SPL12 coevolved with GW5 to determine grain shape. Science Bulletin, 66(23), 2353–2357. https://doi.org/10.1016/j.scib.2021.05.005
. Yan, L., Jiao, B., Duan, P., Guo, G., Zhang, B., Jiao, W., Zhang, H., Wu, H., Zhang, L., Liang, H., Xu, J., Huang, X., Wang, Y., Zhou, Y., & Li, Y. (2024). Control of grain size and weight by the RNA-binding protein EOG1 in rice and wheat. Cell Reports, 43(11), 114856. https://doi.org/10.1016/j.celrep.2024.114856
. Ji, G., Xu, Z., Fan, X., Zhou, Q., Chen, L., Yu, Q., Liao, S., Jiang, C., Feng, B., & Wang, T. (2023). Identification and validation of major QTL for grain size and weight in bread wheat (Triticum aestivum L.). The Crop Journal, 11(2), 564–572. https://doi.org/10.1016/j.cj.2022.06.014
. Zhou, Y., Shang, W., Hui, Y., Shi, C., Gao, J., Zhang, Y., Liu, J., Cheng, D., & Zhu, K. (2023). Construction of an accurate wheat-grain model based on X-ray tomography and bonding parameters by discrete element. Applied Sciences, 13(16), 9265. https://doi.org/10.3390/app13169265
. Jia, F., Zhou, X., Chen, F., & Wang, J. (2015). The calculations and simulation testing on the elastic modulus of wheat. Interdisciplinary Sciences: Computational Life Sciences, 7, 200–204. https://doi.org/10.1007/s12539-015-0184-3
. Anders, A. (2023). Modeling the shape of wheat kernels with the use of solids of revolution. Agricultural Engineering, 27(1), 1–9. https://doi.org/10.1515/agriceng-2023-0001
. Barrera, G. N., Méndez-Méndez, J., Arzate-Vázquez, I., Calderón-Domínguez, G., & Ribotta, P. D. (2019). Nano- and micro-mechanical properties of wheat grain by atomic force microscopy (AFM) and nano-indentation (IIT) and their relationship with the mechanical properties evaluated by uniaxial compression test. Journal of Cereal Science, 90, 102830. https://doi.org/10.1016/j.jcs.2019.102830
. Ros, J., Evin, A., Bouby, L., & Ruas, M.-P. (2014). Geometric morphometric analysis of grain shape and the identification of two-rowed barley (Hordeum vulgare subsp. distichum L.) in southern France. Journal of Archaeological Science, 41, 568–575. https://doi.org/10.1016/j.jas.2013.09.015
. GOST 10940-64. Zerno. Metody opredeleniya tipovogo sostava (Izm. 1, 2, 3). Moscow, Russia: State Committee for Standards, 1964.
. GOST 3040-55. Zerno. Metody opredeleniya kachestva (v chasti opredeleniya vlaghnosti). Moscow, Russia: State Committee for Standards, 1955.
. А.А. Уринбоев, & Б.Р. Исмаилов (2025). Интеграция традиционных и компьютерных методов в оптимизацию процессов увлажнения пшеничного зерна. Al-Farg’oniy avlodlari, 1 (1), 149-160. doi: 10.5281/zenodo.15071165
. Уринбоев Абдушукур Абдурахимович (2024). АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ВЛАЖНОСТЬЮ ЗЕРНА НА МУКОМОЛЬНОМ ЗАВОДЕ «ФАРГОНАДОНМАХСУЛОТЛАРИ». Al-Farg’oniy avlodlari, (3), 93-100. doi: 10.5281/zenodo.13954913
Downloads
Published
How to Cite
License
Copyright (c) 2025 Abdushukur Urinboev, B Ismailov

This work is licensed under a Creative Commons Attribution 4.0 International License.