SUT BEZI SARATONI DIAGNOSTIKASINING MATEMATIK MODELLARI

Authors

  • Sherali Xaydarov Denov tadbirkorlik va pedagogika instituti
  • Akhram Nishanov
  • Raxmatilla Mamajanov
  • Farxod Mengturayev
  • Rustam Yuldashev

Keywords:

mashina o‘qitish, kasallikni bashorat qilish, sun’iy intellekt, diagnostika modellashtirish.

Abstract

Tadqiqotda sut bezi saratoni diagnostikasini matematik modellar yordamida erta aniqlash masalasi ko‘rib chiqildi. Tadqiqotda matematik modellar va mashinaviy o‘qitish usullarining sut bezi saratoni diagnostikasining matematik qo‘yilishi quyidagi bosqichlarni o‘z ichiga oladi, ma’lumotlarni yig‘ish va oldindan ishlov berish, modelni shakllantirish, ma’lumotlarni tahlil qilish va tasniflash, aniqlik va aniqlovchanlikni o‘lchash orqali samaradorliklarni baholash yoritilgan. Tadqiqotda quyidagi vazifalarni amalga oshirdik ma’lumotlarni matematik ifodasi, statik diagnostika uchun formulalar, saraton rivojlanish bashorat qilish, logistik regressiya bu matematik model kasallikni aniqlash va bashorat qilish uchun ishlatiladigan parametrlarni ifodalaydi.

References

1. Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(1), 7–30. https://doi.org/10.3322/caac.21590

2. Harbeck, N., Penault-Llorca, F., Cortes, J., et al. (2019). Breast cancer. Nature Reviews Disease Primers, 5(1), 66. https://doi.org/10.1038/s41572-019-0111-2

3. Woldemichael, A., & Worku, E. (2020). Machine learning algorithms for breast cancer prediction and diagnosis. Journal of Applied Health Sciences, 4(3), 145–156. https://doi.org/10.1016/j.jahs.2020.05.007

4. Giger, M. L. (2020). Machine learning in medical imaging: Breast cancer diagnosis and prognosis. Annual Review of Biomedical Engineering, 22(1), 147–171. https://doi.org/10.1146/annurev-bioeng-111219-090931

5. GLOBOCAN (2021). Breast cancer statistics 2021. International Agency for Research on Cancer. Retrieved from https://gco.iarc.fr).

6. Giger, M. L. (2020). Machine learning in medical imaging: Breast cancer diagnosis and prognosis. Annual Review of Biomedical Engineering, 22, 147–171. https://doi.org/10.1146/annurev-bioeng-111219-090931

7. Harbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., ... & Cardoso, F. (2019). Breast cancer. Nature Reviews Disease Primers, 5(1), 66. https://doi.org/10.1038/s41572-019-0111-2

8. Atakhanova, N. E., Shayusupov, N. R., Ishakov, D. M., Kakhkharov, A. Zh., & Shodmanova, D. S. (2022). Sut bezi saratoni prognozining mammografik va ultratovushli prognostik omillari. Tashkent Medical Academy Journal, 86(1), 87–90.

9. Ahmadova, M. A. (2024). Sut bezi saratonida radiologik tasvir va morfologik xususiyatlarni qiyosiy tavsiflash. Journal of Healthcare and Life-Science Research, 3(6).

10. Ergashev, A. J., & Oralova, S. B. (2024). Ayollarda ko‘krak bezi saratoni diagnostikasi, belgilari va davolash usullari. Modern Education and Development, 15(4), 98–101.

11. Nishanova, Y. X., Ibroximova, F. J., & Musulmonov, Sh. R. (2023). Sut bezi saratoni skriningi. Science and Pedagogy in the Modern World, 1(1), 67–69.

12. Nishanova, Y. X., Ibroximova, F. J., & Musulmonov, Sh. R. (2023). Sut bezi saratoni skriningi. Zenodo.

13. Giger, M. L. (2020). Machine learning in medical imaging: Breast cancer diagnosis and prognosis. Annual Review of Biomedical Engineering, 22, 147–171.

14. Harbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., ... & Cardoso, F. (2019). Breast cancer. Nature Reviews Disease Primers, 5(1), 66.

15. Bozorov, E. X., & Ergashev, A. J. (2022). Tibbiyotda magnit rezonans tomografiyasi mavzusni yangi pedagogik texnologiya asosida o‘qitish. Pedagogik Mahorat, 2, 222–227.

16. Alimkhodjaeva, L. T., & Norbekova, M. H. (2020). Clinical significance of the density of tumor microvessels in breast cancer in men. Central Asian Journal of Medicine, 2, 56–64.

17. Zakirova, L. T., & Alimkhodjaeva, L. T. (2018). Chromosomal disorders and aberrant DNA methylation as early biomarkers of breast cancer risk in young women. Journal of Life Science and Biomedicine, 8(1), 1–5.

18. Norbekova, M. H., Alimkhodjaeva, L. T., & Mirolimov, M. M. (2019). Vzglyad na problemu raka molochnoy zhelezy u muzhchin v Respublike Uzbekistan. Uzbekistan Medical Journal, 1, 56–64.

19. Gonzalez, R., Nejat, P., Saha, A., Campbell, C. J. V., Norgan, A. P., & Lokker, C. (2023). Performance of externally validated machine learning models based on histopathology images for the diagnosis, classification, prognosis, or treatment outcome prediction in female breast cancer: A systematic review. arXiv preprint arXiv:2312.06697.

20. Levshinskii, V., Polyakov, M., Losev, A., & Khoperskov, A. (2019). Verification and Validation of Computer Models for Diagnosing Breast Cancer Based on Machine Learning for Medical Data Analysis. arXiv preprint arXiv:1910.02779.

21. Stoia, S., Băciuț, G., Lenghel, M., & Badea, R. (2021). Imaging in the preoperative diagnosis of parotid gland tumors. Bosnian Journal of Basic Medical Sciences. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861630/

22. Song, X., Yang, X., & Narayanan, R. (2020). Saliva metabolic profiling in oral squamous cell carcinoma diagnosis. Proceedings of the National Academy of Sciences. Retrieved from https://www.pnas.org/doi/pdf/10.1073/pnas.2001395117

23. Liu, S., Yu, B., Zheng, X., Guo, H., & Shi, L. (2024). Construction and application of a nomogram for predicting parotid tumors. Journal of Computer Assisted Tomography. Retrieved from https://journals.lww.com/jcat/fulltext/2024/01000/construction_and_application_of_a_nomogram_for.21.aspx

24. Prezioso, E., Izzo, S., & Giampaolo, F. (2021). Predictive medicine for salivary gland tumors using deep learning. IEEE Journal of Biomedical and Health Informatics. Retrieved from https://ieeexplore.ieee.org/abstract/document/9573315/

25. Lavareze, L., Scarini, J. F., & de Lima-Souza, R. A. (2022). Tumor microenvironment in salivary gland cancer: Translational routes for therapy. Critical Reviews in Oncology/Hematology. Retrieved from https://www.sciencedirect.com/science/article/pii/S1040842822000294

26. Chen, W., Zhu, L. N., Dai, Y. M., & Jiang, J. S. (2020). Differentiation of salivary gland tumors using diffusion-weighted imaging. The British Journal of Radiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465841/

27. Lopez, J. E. (2022). Dose calculations for salivary glands in prostate cancer therapy. Georgetown University Repository. Retrieved from https://repository.library.georgetown.edu/bitstream/handle/10822/1082659/Lopez_georgetown_0076M_15589.pdf

28. Itonaga, T., Tokuuye, K., & Mikami, R. (2022). Mathematical evaluation of salivary gland function post-radiotherapy. The British Journal of Radiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822577/

29. Zhang, Q., Ouyang, H., & Ye, F. (2020). Multiple mathematical models for endometrial cancer characterization. European Journal of Radiology. Retrieved from https://www.sciencedirect.com/science/article/pii/S0720048X20302916

30. Liu, J., Cai, Y., & Huang, D. (2022). Saliva diagnostics: Emerging techniques and biomarkers for cancer detection. Expert Review of Molecular Diagnostics. Retrieved from https://drive.google.com/file/d/1Y2jbE3MZwKtbfDwEvXGecfSlNjOCvij5/view

31. Nishanov, A., Mamajanov , R., Xaydarov , S., Mengturayev , F., & Yuldashev , R. (2024). sut bezi saraton kasalliklarini simptomlarini mashinali o‘qitishga tayyorlash bosqichlari. digital transformation and artificial intelligence, 2(6), 237–249. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v2i633

32. Nishanov, A., Mengturayev , F., Allayarov , U., & Xaydarov , S. (2024). endokrin kasalliklarini tashxislashda foydalaniladigan simptomlarni shakllantirish bosqichlari. digital transformation and artificial intelligence, 2(6), 228–236. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v2i632

33. Nishanov Akhram Khasanovich, Mamazhanov Rakhmatilla Yakubzhanovich, Khaidarov Sherali Islom o‘g‘li, Xolbekov Abdusattor Maxammatovich, & Karimova Zilola Botirovna. (2024). Diagnostic Algorithm for Early Detection of Breast Cancer Based on Error Minimization Approach. International Journal of Innovative Science and Research Technology (IJISRT), 9(12), 1535–1542. https://doi.org/10.5281/zenodo.14565219

Published

2025-03-23

How to Cite

Xaydarov, S., Nishanov, A., Mamajanov, R., Mengturayev, F., & Yuldashev, R. (2025). SUT BEZI SARATONI DIAGNOSTIKASINING MATEMATIK MODELLARI. The Descendants of Al-Fargani, 1(1), 6–14. Retrieved from https://al-fargoniy.uz/index.php/journal/article/view/741

Most read articles by the same author(s)