APPROACH TO DETERMINING GAUSSIAN NOISE PARAMETERS BASED ON QUALITY INDICATORS IN IMAGES

Authors

  • Narzullo Mamatov
  • Keulimjay Erejepov
  • Malika Jalelova "Toshkent irrigatsiya va qishloq xo'jaligini mehanizatsiyalash muhandislari instituti" Milliy tadqiqot universiteti

Keywords:

digital image, noise, Gaussian distribution, filter, quality indicator

Abstract

In the field of digital imaging, accurate estimation of noise level allows solving many image processing tasks in terms of image quality improvement and image restoration. In this research work, Gaussian noise, which occurs in all types of images, is studied, and the task is to determine the parameter of this noise level. Also, using the BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator) indicator, which is popular among benchmark-free image quality evaluation indicators, a mechanism is proposed to determine the interval to which the noise parameter belongs.

References

M. Narzillo, A. Bakhtiyor, K. Shukrullo, O. Bakhodirjon and A. Gulbahor, "Peculiarities of face detection and recognition," 2021 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2021, pp. 1-5, doi: 10.1109/ICISCT52966.2021.9670086.

Mamatov, N., Jalelova, M., & Samijonov, B. (2024). Tasvir obyektlarini segmentatsiyalashning mintaqaga asoslangan usullari. Modern Science and Research, 3(1), 1-4.

N. S. Mamatov, B. A. Abdukadirov, A. N. Samijonov and B. N. Samijonov, "Method for false attack detection in face identification system," 2021 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2021, pp. 1-4, doi: 10.1109/ICISCT52966.2021.9670153.

Маматов, Н. ., Султанов, П. ., Yuлдашев , Yu. ., & Жалелова, М. . (2023). МЕТОДЫ ПОВЫШЕНИYa КОНТРАСТНОСТИ ИЗОБРАЖЕНИЙ ПРИ МУЛТИСПИРАЛНОЙ КОМПYuТЕРНОЙ ТОМОГРАФИИ. Евразийский журнал академиchеских исследований, 3(9), 125–132. извлеchено от https://www.inacademy.uz/index.php/ejar/article/view/20618

Mamatov N. S. et al. Algorithm for improving the quality of mixed noisy images //Journal of Physics: Conference Series. – IOP Publishing, 2024. – Т. 2697. – №. 1. – С. 012013.

Mamatov, N. S., Niyozmatova, N. A., Jalelova, M. M., Samijonov, A. N., & Tojiboyeva, S. X. (2023). Methods for improving contrast of agricultural images. In E3S Web of Conferences (Vol. 401, p. 04020). EDP Sciences.

Маматов, Н., Султанов , П. ., Жалелова , М. ., & Тожибоева , Ш. . (2023). КРИТЕРИИ ОЦЕНКИ КАChЕСТВА МЕДИЦИНСКИХ ИЗОБРАЖЕНИЙ, ПОЛУChЕННЫХ НА МУЛТИСПИРАЛНОМ КОМПYuТЕРНОМ ТОМОГРАФЕ. Евразийский журнал математиchеской теории и компyuтерных наук, 3(9), 27–37. извлеchено от https://www.inacademy.uz/index.php/EJMTCS/article/view/20675

Mamatov, N.S., Pulatov G. G., Jalelova M.M., ―Image contrast enhancement method and contrast evaluation criteria optimal pair‖ Digital Transformation and Artificial Intelligence. Vol. 1 No. 2 (2023). Vol. 1 No. 2 (2023). https://dtai.tsue.uz/index.php/dtai/article/view/v1i225/v1i225

Тхан, Д.Н.Х. Устранение шума на изображениyaх на основе метода полной вариatsiи / Д.Н.Х. Тхан, С.Д. Двоенко // Компyuтернаya оптика. – 2015. – Т. 39, № 4. – С. 564-571, –DOI: 10.18287/0134-2452-2015-39-4-564-571.

Волкова Лилиya Леонидовна Метод подавлениya шума в изображениyaх на основании кратномасштабного анализа // Инженерный журнал: наука и инновatsiи. 2013. №6 (18).

Маматов, Н., & Джалелова, М. (2023). Tasvir shovqinlari tahlili. Информатика и инженерные технологии, 1(2), 113–115. извлеchено от https://inlibrary.uz/index.php/computer-engineering/article/view/25009

Abd Al-salam Selami, Ameen & Fadhil, Ahmed. (2016). A Study of the Effects of Gaussian Noise on Image Features. Kirkuk University Journal / Scientific Studies (1992-0849). 11. 152 - 169. 10.32894/kujss.2016.124648.

Mamatov, N. S., Jalelova, M. M., Tojiboyeva, S. X., & Samijonov, B. N. (2023). Methods for Reducing Mixed Noise in an Image. Methods, 10(12).

El Abbadi N. K., Al-Zubaidi E. A., Razzaq H. S. Image quality assessment tools //Journal of Xi’an University of Architecture and Technology. 2020. Vol. 12. №. 3. P. 1260-1276.

Mittal, Anish & Moorthy, Anush & Bovik, Alan. (2012). No-Reference Image Quality Assessment in the Spatial Domain. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. 21. 10.1109/TIP.2012.2214050.

Published

2025-12-18

How to Cite

Mamatov, N., Erejepov, K., & Jalelova, M. (2025). APPROACH TO DETERMINING GAUSSIAN NOISE PARAMETERS BASED ON QUALITY INDICATORS IN IMAGES. The Descendants of Al-Fargani, 1(4), 115–119. Retrieved from https://al-fargoniy.uz/index.php/journal/article/view/968

Most read articles by the same author(s)