METHODOLOGY FOR IDENTIFYING ANOMALIES BASED ON IMMUNE SYSTEM MECHANISMS

Authors

Keywords:

artificial immune system, anomaly, information security, adverse selection algorithm, system calls, detectors, gene library, cybersecurity.

Abstract

This article proposes an artificial immune system, based on the principles of the biological immune system, for detecting anomalies in information systems. Anomaly detection utilizes an adverse selection algorithm to identify user actions that deviate from the norm. This approach detects anomalies by monitoring system activity in real time, generating a set of templates and detectors. The article also describes the operating principles of the artificial immune system, the evolution of the gene library, and the cloning process. The effectiveness of the proposed model is demonstrated through practical experiments and comparison with other traditional methods.

References

Davlatova D. Axborot tizimlari anomaliyalarini sun’iy immun tizimlar asosida aniqlash mexanizm va algoritmlari //Nordic_Press. – 2024. – Т. 3. – №. 0003.

Мухториддинов М., Акбаров Н., Умаров Ш. Machine learning for network security and anomaly detection //Conference on Digital Innovation:" Modern Problems and Solutions. – 2023.

Kumaravel H. V. An anomaly-based intrusion detection system based on artificial immune system (AIS) techniques : дис. – Purdue University, 2016.

Селеменев А. В., Астахова И. Ф., Трофименко Е. В. Применение искусственных иммунных систем для обнаружения сетевых вторжений //Вестник ВГУ. Серия: Системный анализ и информационные технологии. – 2019. – №. 2. – С. 49-56.

Umarov S., Umarova M. Axborotni himoya qilishda sun’iy immun tizimlar ahamiyati va roli. Digital transformation and artificial intelligence, 3(4), 29-34. – 2025.

Bejoy B. J. et al. A generic cyber immune framework for anomaly detection using artificial immune systems //Applied Soft Computing. – 2022. – Т. 130. – С. 109680.

Salah Sobh T. Anomaly detection based on hybrid artificial immune principles //Information Management & Computer Security. – 2013. – Т. 21. – №. 4. – С. 288-314.

Umarov S. A. et al. The need and importance of using antiviral defense systems based on artificial immune systems //Miasto Przyszłości. – 2025. – Т. 61. – С. 543-548.

Yinka-Banjo C. et al. Intrusion detection using anomaly detection algorithm and snort //Illumination of Artificial Intelligence in Cybersecurity and Forensics. – Cham : Springer International Publishing, 2022. – С. 45-70.

Das R. K. et al. Application of artificial immune system algorithms in anomaly detection //Progress in Computing, Analytics and Networking: Proceedings of ICCAN 2017. – Singapore : Springer Singapore, 2018. – С. 687-694.

Бурлаков М. Е., Ивкин А. Н. Система обнаружения вторжения на основе искусственной иммунной системы //Вестник Пермского национального исследовательского политехнического университета. Электротехника, информационные технологии, системы управления. – 2019. – №. 29. – С. 209-224.

Published

2025-12-05

How to Cite

Umarov, S., & Umarov, N. (2025). METHODOLOGY FOR IDENTIFYING ANOMALIES BASED ON IMMUNE SYSTEM MECHANISMS. The Descendants of Al-Fargani, 1(4), 62–67. Retrieved from https://al-fargoniy.uz/index.php/journal/article/view/926

Issue

Section

Статьи

Categories