Statistical and machine learning approaches for detecting anomalies in large-volume network traffic
Keywords:
Network traffic analysis, anomaly detection, big data, statistical approaches, supervised learning, unsupervised learning, hybrid model, IoT security, cloud computing, 5G networks, real-time monitoring, post-quantum cryptography, autoencoderAbstract
Detecting anomalies in large-scale network traffic is one of the pressing issues in modern information security. The volume of traffic generated as a result of the expansion of Internet services, cloud computing, the development of IoT and 5G networks is increasing dramatically, and this process reduces the effectiveness of traditional security mechanisms. This article studies and compares statistical methods and machine learning approaches to detect anomalous behavior in the network. The advantages of statistical approaches, analysis of variance and time series models, are explained by their performance and efficiency in real-time monitoring, but their accuracy is limited in large-scale data.
References
Khudoyberdiev, A., & Islomov, B. (2022). Methods for detecting anomalies in large-scale network traffic. International Journal of Computer Networks, 18(3), 45–60.
Smith, J., & Doe, P. (2021). Machine learning approaches for network anomaly detection. Springer.
Li, X., Wang, Y., & Zhang, Z. (2020). Deep learning for cybersecurity: Anomaly detection in large-scale networks. IEEE Transactions on Network Science and Engineering, 7(2), 123–135. https://doi.org/10.1109/TNSE.2020.2971234
Kumar, S. (2019). Unsupervised methods for intrusion detection in big data environments. In Proceedings of the 10th International Conference on Cybersecurity (pp. 98–107).
Ivanov, I. (2020). Hybrid statistical and machine learning methods in network security. Nauka.
Zhang, L., et al. (2023). Autoencoder-based anomaly detection in network traffic. Journal of Computer Networks, 15(1), 22–38.
Hooshmand, M. K., & Hosahalli, D. (2022). Network anomaly detection using deep learning techniques. CAAI Transactions on Intelligence Technology, 7(2), 228–243.
Garcia-Teodoro, P., Diaz-Verdejo, J., & Macia-Fuentes, F. (2009). Anomaly detection in network traffic: A survey. Computer Networks, 54(15), 2948–2970.
Brown, K. (2021). Semi-supervised learning for network intrusion detection. Computing Journal, 65(4), 202–217.
Singh, G., & Bansal, M. (2022). Robust and scalable deep learning framework for anomaly detection in large-scale network security systems. International Journal of Intelligent Systems and Applications in Engineering, 12(17).
Lunardi, W. T., Lopez, M. A., & Giacalone, J. P. (2022). ARCADE: Adversarially regularized convolutional autoencoder for network anomaly detection. arXiv preprint arXiv:2205.01432.
Fan, H., Zhang, F., & Li, Z. (2020). AnomalyDAE: Dual autoencoder for anomaly detection on attributed networks. arXiv preprint arXiv:2002.03665.
Caville, E., Lo, W. W., Layeghy, S., & Portmann, M. (2022). Anomal-E: A self-supervised network intrusion detection system based on graph neural networks. arXiv preprint arXiv:2207.06819.
Wen, T., & Keyes, R. (2019). Time series anomaly detection using convolutional neural networks and transfer learning. arXiv preprint arXiv:1905.13628.
Zareh Farkhady, R., Majidzadeh, K., Masdari, M., & Ghaffari, A. (2023). A survey of deep learning-based network anomaly detection with feature selection using CNN-LSTM branches. Emergent.
Marfo, W., Tosh, D. K., & Moore, S. V. (2022). Network anomaly detection using federated learning. In MILCOM 2022 – IEEE Military Communications Conference.
Almuhanna, R., Dardouri, S., et al. (2025). A deep learning/machine learning approach for anomaly-based network intrusion detection. Frontiers in Artificial Intelligence.
Shuzhan, W., Ruxue, J., Zhaoqi, W., & Yan, Z. (2024). Deep learning-based anomaly detection and log analysis for computer networks. arXiv preprint arXiv:2407.05639.
Khusanova, M. K., & Rakhmonov, O. Sh. (2025). Prospects and practical solutions of post-quantum cryptography. Miasto Przyszłości, 61, 894–897.
Raxmonov, O., & Umarov, Sh. (2024). Assessment of the level of security available in 4G and 5G mobile communication networks. Al-Farg‘oniy avlodlari electronic scientific journal, 1(4), 294–297.
Бекназарова, С., & Ганиева, Ш. (2022). Class vr как современный важный фактор качественного образования. Значение цифровых технологий в изучении истории Узбекистана, 1(01), 331–335.
Muminov Kamolkhon Ziyodjon ugli (2024). Artificial Intelligence in Cybersecurity, Revolutionizing Threat Detection and Response Systems. Al-Farg’oniy avlodlari, (4), 344-347. doi: 10.5281/zenodo.14555450
Muminov Kamolkhon Ziyodjon ugli (2024). Social Engineering, Human Factor in Cybersecurity. Al-Farg’oniy avlodlari, (3), 149-152. doi: 10.5281/zenodo.13954935
Downloads
Additional Files
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Ozodbek Raxmonov

This work is licensed under a Creative Commons Attribution 4.0 International License.