DETECTION OF PRINTED FALSE ATTACKS USING NEURAL NETWORKS

Authors

  • Бахтиёр Абдукадиров Ферганский филиал ТУИТ

Keywords:

biometric system, false alarm attack, local binary pattern, support vector machine, convolutional neural networks, recurrent network, classification evaluation metrics

Abstract

This article discusses a method for detecting false positives against a biometric facial recognition system based on deep convolutional neural networks. The proposed method is designed to detect printed false positives and is tested on open databases of real and fake faces, and the results are analyzed. The types of false positive attacks launched against a biometric system based on existing faces are analyzed.

References

Фозилов Ш.Х., Раджабов С.С, Абдукадиров Б.А. / Шахсни биометрик идентификациялаш тизимларида сохта киришни аниқлаш муаммоси // Мухаммад ал-Хоразмий авлодлари, Ташкент 2020. — №3(13). - Б. 16–23.

Duc N.M. Your face is not your password / Black Hat Conference. 2009. – C. 1-16.

Chingovska, I. On the Effectiveness of Local Binary Patterns in Face Antispoofing / I. Chingovska, A. Anjos, S. Marcel // Biometrics Special Interest Group, 2012 BIOSIG - Proceedings of the International Conference of the.– 2012.

Maatta, J. Face spoofing detection from single images using micro-texture analysis / J. Maatta, A. Hadid, M.Pietikainen // Biometrics (IJCB), International Joint Conference on Biometrics, IEEE. – 2011. – С. 1-7.

Rekha, P.S. Spoofing Face Recognition Using Neural Network with 3D Mask / / IJETCSE. – 2015. – Т. 14 – № 1 – С. 123-127.

Yang, J. Face liveness detection with component dependent descriptor / J. Yang, Z. Lei, S. Liao // Biometrics (ICB). – 2013. – С. 1-6.

Способ идентификации личности по радужной оболочке глаза (варианты) : пат. 2407435 Рос. Федерация : МПК A 61 B 3/10 / Д. Е. Антонов ; заявитель и патентообладатель Антонов Дмитрий Евгеньевич. – № 2009128069/14 ; заявл. 22.07.2009 ; опубл. 27.12.2010.

Adamiak, K. Liveness detection in remote biometrics based on gaze direction estimation / K. Adamiak, D. Zurek, K. Slot // Proc. Fed. Conf. Comput. Sci. Inf. Syst. – 2015. – C. 225–230.

Kant, C. Fake Face Recognition Using Fusion of Thermal Imaging and Skin Elasticity / C. Kant, N. Sharma // IJCSC. – 2013. – Т. 4 – C. 65-72.

Chen, S. Sensor-assisted facial recognition: an enhanced biometric authentication system for smartphones / S. Chen, A. Pande, P. Mohapatra // MobiSys '14. – 2014. – C. 109-122.

Ручай, А.Н. Модель атак и защиты биометрических систем распознавания диктора / А. Н. Ручай // Доклады ТУСУРа. – 2011. – № 1 – С. 96–100.

Ratha, N.K. Enhancing security and privacy in biometrics-based authentication systems / N. K. Ratha, J. H. Connell, R. M. Bolle // IBM Syst. J. – 2001. – Т. 40, № 3 – С. 614–634.

Yang, J. Learn convolutional neural network for face antispoofing. arXiv preprint arXiv:1408.5601, 2014

Li, L. An original face anti-spoofing approach using partial convolutional neural network. In IPTA, 2016.

Xu, Z. Learning temporal features using LSTM-CNN architecture for face anti-spoofing. ACPR, 2015, pp. 41-45

Rodriguez P., A painless attention mechanism for convolutional neural networks, ICLR, 2018, pp. 1-8

Published

2025-10-03

How to Cite

Абдукадиров, Б. (2025). DETECTION OF PRINTED FALSE ATTACKS USING NEURAL NETWORKS. The Descendants of Al-Fargani, (3), 115–118. Retrieved from https://al-fargoniy.uz/index.php/journal/article/view/903

Issue

Section

Статьи

Categories