MODERN POSTQUANTUM CRYPTOGRAPHIC ALGORITHMS AND THEIR EFFICIENCY

Authors

  • Alisher Arabboyev TATU Farg'ona filiali
  • Bakhtiyor Abdurakhimov Mirzo Ulugbek National University of Uzbekistan
  • Ilkhom Boykuziyev Tashkent University of Information Technologies named after Muhammad Al-Khwarizmi

Keywords:

quantum computers, symmetric and asymmetric algorithms, Shor and Grover algorithm, Post-quantum cryptographic algorithms

Abstract

The development of quantum computers has serious implications for cryptography. Most symmetric and asymmetric cryptographic algorithms are vulnerable to quantum algorithms. The Grover search algorithm improves the efficiency of finding the key in symmetric schemes such as AES and 3DES in square root of time. The security of asymmetric algorithms such as RSA, Diffie-Hellman, and Elliptic Curve Cryptosystems (ECC) is based on the mathematical difficulty of prime factorization and discrete logarithm problems. The best available classical algorithms take exponential time. The Shor factorization algorithm solves these problems in polynomial time.

References

T. S. Humble, Consumer Applications of Quantum Computing: A Promising Approach for Secure Computa tion, Trusted Data Storage, and E cient Applications, IEEE Consumer Electronics Magazine, 2018.

A. Chaturvedi, N. Srivastava, V. Shukla, A secure wireless communica tion protocol using Diffie-Hellman key exchange, International journal of computer applications, volume 126, number 5, 2015, 35-38, DOI: 10.5120/ijca2015906060

G. J. A.-S. D. A. D. C. Q. D. J. K. e. a. Alagic, Status Report on the Second Round of the NIST Post QuantumCryptography Standardization Process, NIST Internal or Interagency Report (NISTIR) 8309, 2020.

P. Schwabe, Crystals Kyber, December 2020. [On line]. Available: https://pq-crystals.org/kyber/index.shtml.

P. Schwabe, Crystals Dilithium, [Online]. Avail able: https://pq-crystals.org/dilithium/index.shtml.

Falcon, [Online]. Available: https://falcon-sign.info/.

P. Schwabe, SPHINCS+, December 2020. [On line]. Available: https://sphincs.org/.

D. J. Bernstein, Introduction to Post-Quantum Cryptography, Springer, p. pp. 114, 2009.

D. S. M. N. a. R. K. Kanad Basu, NIST Post Quantum Cryptography- A Hardware Evaluation Study, Cryptology ePrint Archive, Report 2019/047, 2019.

X. e. a. Bogomolec, Towards Post-Quantum Secure Symmetric Cryptography: A Mathematical Perspective, IACR Cryptol. ePrint Arch. 2019 (2019).

D. J. B. a. N. H. a. P. L. a. L. Valenta, Post Quan tum RSA, in Post-Quantum Cryptography, Springer, 2017.

P. J. Paar C., Public-Key Cryptosystems Based on the Discrete Logarithm Problem, in Understanding Cryptography, Springer, 2010.

S. Blanda, Shors Algorithm Breaking RSA En cryption, 2014. [Online]. Available: https://blogs.ams. org/mathgradblog/2014/04/30/shors-algorithm-breaking rsa-encryption/.

L. e. a. Chen, Report on Post-Quantum Cryptog raphy, NIST Internal or Interagency Report (NISTIR) 8105, National Institute of Standards and Technology, 2016.

F. F. M. A. K. M. ,. T. N. a. K. G. Viet Ba Dang, Im plementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardiza tion Process Using Hardware and Software/Hardware Co-design Approaches, Cryptology ePrint Archive, Re port 2020/795, 2020.

NIST, Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process, NIST, 2017.

Published

2025-09-17

How to Cite

Arabboyev, A., Abdurakhimov , B., & Boykuziyev , I. (2025). MODERN POSTQUANTUM CRYPTOGRAPHIC ALGORITHMS AND THEIR EFFICIENCY. The Descendants of Al-Fargani, (3), 29–36. Retrieved from https://al-fargoniy.uz/index.php/journal/article/view/882

Issue

Section

Статьи

Categories