An algorithm for generating cryptographic keys for small IoT devices

Authors

  • Мирхон Нуруллаев БухМТИ

Keywords:

cryptographic key generation, entropy collection, key expansion algorithm, IoT security

Abstract

This paper proposes a lightweight random key generation algorithm for resource-constrained IoT devices. The algorithm uses random collection and multi-source preprocessing to increase randomness and extend keys to desired lengths with minimal computation. Evaluation using statistical tests such as NIST and DIEHARD confirms its cryptographic robustness and secure operation. This approach serves to strike a balance between security and efficiency, making it suitable for IoT applications that require reliable, low-resource encryption.

References

P. Kaur and S. Aggarwal, “Cryptographic algorithms in IoT - a detailed analysis,” in 2nd International Conference on Computational Methods in Science & Technology (ICCMST), (Mohali, India, 2021), pp. 45-50, doi: 10.1109/ICCMST54943.2021.00021

N. M. Mukhammadovich and A. R. Djuraevich, International Journal of Electrical and Computer Engineering 13, 911 (2023). https://doi.org/10.11591/ijece.v13i1.pp911-919

M. Rana, Q. Mamun and R. Islam, Sensors 23(18):7678 (2023). https://doi.org/10.3390/s23187678

J. Furtak, Sensors 20(17):5012 (2020). https://doi.org/10.3390/s20175012

K. H. Stangherlin and M. Sachdev, (2021) 22nd International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 2021, pp. 529-534, doi: 10.1109/ISQED51717.2021.9424335.

C. Herder, M. -D. Yu, F. Koushanfar and S. Devadas, (2014) in Proceedings of the IEEE, vol. 102, no. 8, pp. 1126-1141, Aug. 2014, doi: 10.1109/JPROC.2014.2320516.

Mahmoud, A., Rührmair, U., Majzoobi, M., & Koushanfar, F. (2013). Combined modeling and side channel attacks on strong PUFs. Cryptology ePrint Archive, Paper 2013/632. Retrieved from https://eprint.iacr.org/2013/632

M. Wang, A. Yates and I. L. Markov, (2014) IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 2014, pp. 454-461, doi: 10.1109/ICCAD.2014.7001391.

Halak, B. (2018). Physically Unclonable Functions: Design Principles and Evaluation Metrics. In: Physically Unclonable Functions. Springer, Cham. https://doi.org/10.1007/978-3-319-76804-5_2

Iavich, M., & Kuchukhidze, T. (2024). Investigating CRYSTALS-Kyber Vulnerabilities: Attack Analysis and Mitigation. Cryptography, 8(2), 15. https://doi.org/10.3390/cryptography8020015

Lampert, B., Wahby, R. S., Leonard, S., & Levis, P. (2016). Robust, low-cost, auditable random number generation for embedded system security. Cryptology ePrint Archive, Paper 2016/884. https://doi.org/10.1145/2994551.2994568

M. M. Nurullaev, “Functions and their mechanisms for generating cryptographic keys and random numbers,” AIP Conference Proceedings 2969, (AIP Publishing, Melville, NY, 2024). https://doi.org/10.1063/5.0181797

A. Kwala, S. Kant and A. Mishra, Discover Internet of Things 24, (2024). https://doi.org/10.1007/s43926-024-00069-2

H. Bandara, Y. Herath, T. Weerasundara and J. Alawatugoda, Cryptography 6(4):56 (2022).

S. Ali and F. Anwer, Int. j. inf. tecnol. 16, 2053–2067 (2024). https://doi.org/10.1007/s41870-024-01753-w

J. Furtak, Sensors 23(11):5102 (2023). https://doi.org/10.3390/s23115102

O‘z DSt 1106:2009 – Information technology. Cryptographic protection of information. Hash function. (2009).

M. M. Nurullaev, “Generating random numbers for a cryptographic key based on smartphone sensors,” International Scientific and Practical Conference on “Modern Problems of Applied Mathematics and Information Technology (MPAMIT2022)” AIP Conf. Proc. 3004, 060014-1–060014-5 (AIP Publishing, Melville, NY, 2024). https://doi.org/10.1063/5.0199570

Nurullaev M. M. Modeling of information processes in integrated security systems. Journal Molodoy uchoniy. – (2018). – Т. 17. – №. 203. – С. 26-27.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, N. Heckert, J. Dray, S. Vo, and L. Bassham, NIST Special Publication 800-22: A Statistical Test Suite for the Validation of Random Number Generators and Pseudo-Random Number Generators for Cryptographic Applications (2010), available at https://doi.org/10.6028/NIST.SP.800-22r1a

G. Marsaglia, DIEHARD: A Battery of Tests of Randomness. 1995. Accessed January 10, 2025, available at http://stat.fsu.edu/pub/diehard/

Published

2025-03-23

How to Cite

Нуруллаев, М. (2025). An algorithm for generating cryptographic keys for small IoT devices. The Descendants of Al-Fargani, 1(1), 179–183. Retrieved from https://al-fargoniy.uz/index.php/journal/article/view/748

Issue

Section

Статьи

Categories