Trikotaj to‘qimalarini real vaqt rejimida aniqlangan nuqsonlarni tahlil qilish
Keywords:
Trikotaj to‘qimalari, real vaqt rejimi, nuqson aniqlash, matematik modellar, stokastik jarayonlar, Markov maydoni, Gabor filtrlari, konvolyutsion neyron tarmoqlar, tasvirni qayta ishlash, chuqur o'rganishAbstract
Ushbu maqolada trikotaj mahsulotlarini ishlab chiqarish jarayonida yuzaga keladigan yuzaki nuqsonlarni real vaqt rejimida aniqlash va tahlil qilish masalasi ko‘rib chiqiladi. Buning uchun tasvirni qayta ishlash, stokastik jarayonlar va Markov tasodifiy maydon modellari, Gabor filtrlari, shuningdek, konvolyutsion neyron tarmoqlar (CNN) kabi chuqur o‘rganish yondashuvlariga asoslangan matematik modellardan foydalanish taklif etiladi. Ishlab chiqilgan usullar nuqsonli punktlarni aniqlash va klasifikatsiyalashda yuqori aniqlikka erishishga yordam beradi hamda ishlab chiqarishni optimallashtirish, brakka chiqadigan mahsulotlar miqdorini kamaytirish, umumiy sifatni oshirishga xizmat qiladi.
References
Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, (6), 610-621.
Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing. Pearson.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788.
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems (NeurIPS), 91–99.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. European Conference on Computer Vision (ECCV), 21–37.
Fang, W., & Liu, Y. (2020). Textile defect detection using deep learning techniques: A review. IEEE Access, 8, 170558–170576.
Tsang, H. H., Tang, Y. Y., & Lau, F. C. M. (2001). A textile inspection method using two‐dimensional Gabor filters. International Journal of Production Research, 39(2), 307–319.
Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.
Published
How to Cite
License
Copyright (c) 2024 Хуршид Мусаев, Nosirjon Sharibayev

This work is licensed under a Creative Commons Attribution 4.0 International License.
