Tibbiy tasvirlar ichida alohida qiziqish hududlarini (Region of interest–ROI) avtomatik aniqlash va izolyatsiya qilish

Authors

  • Zarina Ermatova TATUFF
  • Asrayev Asrayev
  • Voxid Orzumurod o‘g‘li Fayziyev
  • Shaxnoza Abdurshidovna Turakulova

Keywords:

Tibbiy tasvir segmentatsiyasi, Qiziqish hududi, ROI, Avtomatik aniqlash, Tasvirni tahlil qilish, Tasvirga ishlov berish, Kompyuter ko‘rish, Mashinani o‘rganish

Abstract

Abstract: The importance of medical image segmentation in improving the accuracy of decision making in healthcare is very important. This involves identifying and segmenting different structures or regions of interest (ROIs) within medical images. Identification of regions of interest is important because it aids in diagnosis; treatment planning; and monitoring of various medical conditions. In this article; we explore the importance of accurate identification in medical images; along with the role of algorithms in achieving this accuracy.

References

Foydalanilgan adabiyotlari

Yanhui Guo; Amira S. Ashour. “11 - Neutrosophic sets in dermoscopic medical image segmentation”. Neutrosophic Set in Medical Image Analysis 2019; Pages 229-243

Jin; S.; Yu; S.; Peng; J. et al. A novel medical image segmentation approach by using multi-branch segmentation network based on local and global information synchronous learning. Sci Rep 13; 6762 (2023). https://doi.org/10.1038/s41598-023-33357-y

Kong Z; Li T; Luo J; Xu S. Automatic Tissue Image Segmentation Based on Image Processing and Deep Learning. J Healthc Eng. 2019 Jan 31;2019:2912458. doi: 10.1155/2019/2912458. PMID: 30838122; PMCID: PMC6374831.

Sharma N; Aggarwal LM. Automated medical image segmentation techniques. J Med Phys. 2010 Jan;35(1):3-14. doi: 10.4103/0971-6203.58777. PMID: 20177565; PMCID: PMC2825001.

Li; Mengfang; and Yanzhou Zhang. "Medical image analysis using deep learning algorithms." Frontiers in Public Health 11 (2023): 1273253.

Vigueras-Guillén; Juan P.; et al. "Automatic detection of the region of interest in corneal endothelium images using dense convolutional neural networks." Medical Imaging 2019: Image Processing. Vol. 10949. SPIE; 2019.

Ermatova Z. АКТУАЛЬНОСТЬ ПРЕПОДАВАНИЯ ЯЗЫКА ПРОГРАММИРОВАНИЯ C++ В ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЯХ //Потомки Аль-Фаргани. – 2023. – №. 4. – С. 237-241.

Ermatova Z. Kotlin dasturlashtilida Map–to ‘plami //Journal of technical research and development. – 2023. – Т. 1. – №. 3. – С. 104-107.

Ermatova Z. Dasturlash fanini o ‘qitishning dolzarb muammolarini aniqlash va bartaraf etishda o ‘qituvchining yondashuvi //Journal of technical research and development. – 2023. – Т. 1. – №. 2. – С. 166-169.

Qaxramonovna E. Z. PROBLEMS OF FEMALE STUDENTS IN LEARNING PROGRAMMING SUBJECTS //Intent Research Scientific Journal. – 2023. – Т. 2. – №. 10. – С. 116-123.

Published

2024-03-25

How to Cite

Ermatova, Z., Asrayev, A., Fayziyev , V. O. o‘g‘li, & Turakulova , S. A. (2024). Tibbiy tasvirlar ichida alohida qiziqish hududlarini (Region of interest–ROI) avtomatik aniqlash va izolyatsiya qilish. The Descendants of Al-Fargani, 1(1), 142–146. Retrieved from https://al-fargoniy.uz/index.php/journal/article/view/305

Issue

Section

Статьи

Categories