LOCAL CURVATURE AS A STRUCTURAL FEATURE OF STATIC SIGNATURE VERIFICATION

Akhundjanov Umidjon Yunus ugli, Candidate of Technical Sciences, Head of Department, Fergana Branch of Tashkent University of Information Technologies named after Muhammad al-Khorazmi e-mail: axundjanov_90@mail.ru

Authors

  • Умиджон Ахунджанов ФФТУИТ имени Мухаммада ал-Хоразмий

Keywords:

curvature, handwritten signature, correlation

Abstract

Abstract. This paper proposes a new feature for describing a digital image of a handwritten signature based on the frequency distribution of local curvature values of the contours of this signature. The calculation of this feature on a binary signature image is described in detail. A normalized histogram of the distributions of local curvature values for 40 intervals is generated. The frequency values, written as a 40-dimensional vector, are named the local curvature code of the signature.

Experimental studies are performed on digitized images of genuine and fake signatures from two databases. The accuracy of automatic verification of signatures on the publicly available CEDAR database was 99.77% and on the TUIT database 88.62%.

References

Lin W. Y. et al. Robust and accurate curvature estimation using adaptive line integrals // EURASIP Journal on Advances in Signal Processing. – 2010. – Vol. 2010. – P. 1–14. doi:10.1155/2010/240309

Gadermayr M. et al. Shape curvature histogram: A shape feature for celiac disease diagnosis // Medical Computer Vision. Large Data in Medical Imaging: Third International MICCAI Workshop, MCV 2013, Nagoya, Japan, September 26, 2013, Revised Selected Papers 3. – Springer International Publishing, 2014. – P. 175–184.

Han J. H., Poston T. Chord-to-point distance accumulation and planar curvature: a new approach to discrete curvature // Pattern Recognition Letters. – 2001. – Vol. 22, №. 10. – P. 1133–1144.

Arica N., Vural F. T. Y. BAS: a perceptual shape descriptor based on the beam angle statistics // Pattern Recognition Letters. – 2003. – Vol. 24, №. 9-10. – P. 1627–1639.

Coeurjolly D., Miguet S., Tougne L. Discrete curvature based on osculating circle estimation // 4-th International Workshop on Visual Form, IWVF4 Capri, Italy, May 28–30, 2001 Proceedings. – Springer Berlin Heidelberg, 2001. – P. 303–312.

Cazals F., Pouget M. Estimating differential quantities using polynomial fitting of osculating jets // Computer Aided Geometric Design. – 2005. – Vol. 22, №. 2. – P. 121–146. https://doi.org/10.1016/j.cagd.2004.09.004

Gao D. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications // Geophysics. – 2013. – Vol. 78. – №. 2. – P. O21–O31. https://doi.org/10.1190/geo2012-0190.1

Chen He X., Yung N. H. C. Corner detector based on global and local curvature properties // Optical Engineering. – 2008. – Vol. 47, №. 5. – P. 057008–057008–12. https://doi.org/10.1117/1.2931681

Zhang W. et al. Discrete curvature representations for noise robust image corner detection // IEEE Transactions on Image Processing. – 2019. – Vol. 28, №. 9. – P. 4444–4459. doi:10.1109/tip.2019.2910655

Worring M., Smeulders A. W. M. Digital curvature estimation // CVGIP: Image Understanding. – 1993. – Vol. 58, №. 3. – P. 366–382. https://doi.org/10.1006/ciun.1993.1048

Tong W. S., Tang C. K. Robust estimation of adaptive tensors of curvature by tensor voting // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2005. – Vol. 27, №. 3. – P. 434–449.

Flynn P. J., Jain A. K. On reliable curvature estimation // Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. – 1989. Vol. 88. – P. 5–9.

Guerbai Y., Chibani Y., Hadjadji B. The effective use of the one SVM classifier for handwritten signature verification based on writer-independent parameters // Pattern Recognition. – 2015. – Vol. 48, №. 1. – P 103–113.

Alam S. et al. One-class support vector classifiers: A survey // Knowledge-Based Systems. – 2020. – Vol. 196. – P. 105754. doi: https://doi.org/10.1016/j.knosys.2020.105754.

Ахунджанов У.Ю., Старовойтов В.В. Предварительная обработка изображений рукописных подписей для последующего распознавания // Системный анализ и прикладная информатика. – 2022. – № 2. – С. 4–9.

Старовойтов В.В., Ахунджанов У.Ю. Новый признак для описания изображений рукописной подписи на базе локальных бинарных шаблонов // Информатика. – 2022. – Т. 19, № 3. – С. 62–73. https://doi.org/10.37661/1816-0301-2022-19-3-62-73

Published

2024-03-25

How to Cite

Ахунджанов, У. (2024). LOCAL CURVATURE AS A STRUCTURAL FEATURE OF STATIC SIGNATURE VERIFICATION: Akhundjanov Umidjon Yunus ugli, Candidate of Technical Sciences, Head of Department, Fergana Branch of Tashkent University of Information Technologies named after Muhammad al-Khorazmi e-mail: axundjanov_90@mail.ru. The Descendants of Al-Fargani, 1(1), 11–16. Retrieved from https://al-fargoniy.uz/index.php/journal/article/view/284

Issue

Section

Статьи

Categories

Most read articles by the same author(s)