ALGORITHMS FOR DETERMINING THE PHYTOSANITARY STATUS OF CULTIVATED PLANTS BASED ON LEAF IMAGE

Authors

  • Azizbek Tillavoldiyev НИИ РАЗВИТИЯ ЦИФРОВЫХ ТЕХНОЛОГИЙ И ИСКУССТВЕННОГО ИНТЕЛЛЕКТА
  • Sobirjon Radjabov
  • Gulmira Mirzayeva
  • J.A. Allayorov

Keywords:

fitosanitar holatini aniqlash, asosiy tasvir boʻlaklari, tashxisiy belgilar, afzal belgilar, umumiy bahoni hisoblash

Abstract

In this article, the issue of determining the phytosanitary status of cultivated plants was considered, and their leaf images were taken as initial data. To solve this problem, a model of recognition algorithms based on two-dimensional threshold functions is proposed. The main idea of the proposed algorithms is to form a set of preferred symbols and build a decision-making rule based on the comparison of these symbols. Phytosanitary status determination algorithm model classification steps are presented. Evaluation of the applicability of the proposed model is shown by solving the problem of determining the phytosanitary status of cotton using leaf images.

References

Jacobs M. (Ed) Information and Communications Technologies in Agriculture. States Academic Press, 2022. - 239 p.

Che F.N., Strang K.D., Vajjhala N.R. Opportunities and Strategic Use of Agribusiness Information Systems. IGI Global, 2021. - 333 p.

Fouda Hazem Shawky. Information Technology in Agriculture. Delve Publishing, 2020. — 270 p.

Noh Hyun-Ho, Han Xiongzhe. (2022). Plant Disease Diagnosis Using Deep Learning Based on Aerial Hyperspectral Images: A Review. Remote Sensing. 14. 6031. 10.3390/rs14236031.

Adedoja A.O., Owolawi P.A., Mapayi T., Tu C. (2022) Intelligent Mobile Plant Disease Diagnostic System Using NASNet-Mobile Deep Learning. IAENG International Journal of Computer Science. Vol. 49, No 1. Pp. 216-231

Tembhurne, J.V., Gajbhiye, S.M., Gannarpwar, V.R. et al. Plant disease detection using deep learning based Mobile application. Multimed Tools Appl 82, 27365–27390 (2023). https://doi.org/10.1007/s11042-023-14541-8

Anami B.S., Pujari J.D., Yakkundimath R. Identification and classification of normal and affected agriculture/horticulture produce based on combined color and texture feature extraction // International Journal of Computer Applications in Engineering Sciences – 2011. – Vol. 1, № 3. – P. 356– 360.

El-Helly M., Rafea A., El-Gammal S. An Integrated Image Processing System for Leaf Disease Detection and Diagnosis // In Proceedings of the 1st Indian International Conference on Artificial Intelligence (December 18-20, 2003). – Hyderabad, India, 2003. – P. 1182–1195. 40

Cheshkova A.F. A review of hyperspectral image analysis techniques for plant disease detection and identif ication // Vavilov Journal of Genetics and Breeding. Novosibirsk, 2022. Vol. 26. No. 2. P. 202-213. DOI:10.18699/VJGB-22-25

Тутыгин В.С., Аль-Винди Басим Х.М.А. Способ распознавания болезней растений по текстурным признакам с использованием нечёткой логики // Инженерный вестник Дона. Ростов-на-Дону, 2019. № 3. – URL: http://ivdon.ru/ru/magazine/archive/n3y2019/5846 (дата обращения: 22.05.2021).

Мирзаев Н.М. Модель выделения признаков в задаче диагностики фитосостояния растений по изображениям листьев // Вестник Рязанского государственного радиотехнического университета. – Рязань, 2012. – № 3. – С.17–21.

Mirzaev N, Saliev E. Feature extraction model in systems of diagnostics of plant diseases by the leaf images. Instrumental Engineering, Electronics and Telecommunications – 2017. Proceedings of the International forum (November 22–24, 2017, Izhevsk, Russia). – Izhevsk: Publishing House of Kalashnikov ISTU, 2018. – Pp. 20-27.

Mirzaeva G.R. Models of Recognition Algorithms Based on Construction of Two-Dimensional Logical Classifiers // Networked Control Systems for Connected and Automated Vehicles 2022, Volume 2. Springer, 2022. Pp. 1199–1209. DOI:10.1007/978-3-031-11051-1_122.

Журавлев Ю.И. Избранные научные труды. – М.: Магистр, 1998. – 420 с.

Mirzaev N. M. About one model of image recognition // Computer Technology and Applications: Proceedings of The First Russia and Pacific Conference. – Vladivostok, 2010. – P. 394–398. – URL: ftp://ftp.dvo.ru/pub/RPC_2010/rpc2010_docs/

Burger W., Burge M.J. Digital Image Processing. An Algorithmic Introduction. Springer, 2022. - 936 p.

Gonzalez R.C., Woods R.E. Digital Image Processing. New York: Pearson, 2018. - 1306 p.

Ту, Дж., Гонсалес, Р. Принципы распознавания образов. Пер. с англ. И.Б. Гуревича; под ред. Ю.И. Журавлева. – М.: Мир, 1978. – 410 с.

О.Н.Мирзаев, Ф.Ф.Мелиев, Г.Р.Мирзаева, О.А.Тиллаволдиев «Экстремал таниб олиш алгоритмларини қуришда репрезентатив белгиларни аниқлаш» // Узбекский журнал «Проблемы информатики и энергетики». – Ташкент, 2022. – № 6. – С.80-90 (ВАК)

Ш.Х.Фазылов, С.С.Раджабов, Г.Р.Мирзаева, Х.Ш.Рашидов «Модель распознающих операторов, основанных на оценке взаимосвязанности признаков»// Узбекский журнал «Проблемы информатики и энергетики». – Ташкент, 2022. – № 6. – С.22-31

Braga-Neto U.M., Dougherty E.R. Error Estimation for Pattern Recognition. – New York: Springer, 2016. – 312 p.

Published

2023-12-11

How to Cite

Tillavoldiyev, A., Radjabov, S., Mirzayeva, G., & Allayorov, J. (2023). ALGORITHMS FOR DETERMINING THE PHYTOSANITARY STATUS OF CULTIVATED PLANTS BASED ON LEAF IMAGE. The Descendants of Al-Fargani, 1(4), 54–59. Retrieved from http://al-fargoniy.uz/index.php/journal/article/view/88