Knowledge automation: Artificial Intelligence in school education

Authors

  • Diyorbek Ibragimov Toshkent Axborot Texnologiyalari Universiteti Farg'ona filiali
  • Temurbek Abdullayev FSTU

Keywords:

mobile application, artificial intelligence, text and image generation, educational process, GPT, DALL-E, CLIP, unCLIP, diffusion models, transformer

Abstract

The article describes the development of a mobile application that uses artificial intelligence to generate texts and images for educational purposes, as well as the principles of GPT operation and an overview of diffusion models used in generative AI, with DALL-E as an example. The main goal of creating the mobile application is to integrate such technologies into school subjects such as biology, history, foreign languages, computer science, and others. The study employs transformer models and hierarchical image generation. The results demonstrate successful text and image generation. The advantages and prospects of applying this technology in education are discussed.

References

Xu W., Ouyang F. / The application of AI technologies in STEM education: a systematic review from 2011 to 2021 // International Journal of STEM Education, 2022 – URL: https://stemeducationjournal.springeropen.com/articles/10.1186/s40594-022-00377-5/ (дата обращения: 25.04.2025)

Modi M. / Kotlin vs Java: which is better for You in 2022 // Medium, MQoS Technologies. – URL: https://medium.com/mqos-technologies/kotlin-vs-java-which-is-better-for-you-in-2022-7ce97790c20 (дата обращения: 26.04.2025)

Vaswani A., Shazeer N., Parmar N. [и др.] / Attention All You Need // arXiv preprint arXiv: 1706.03762, 2017 – URL: https://arxiv.org/abs/1706.03762

Ramesh A., Dhariwal P., Nichol A. [и др.] / Hierarchical Text-Conditional Image Generation with CLIP Latents // arXiv preprint arXiv: 2204.06125, 2022 – URL: https://arxiv.org/abs/2204.06125

Radford A., Kim J. W., Hallacy Ch. [и др.] / Learning transferable visual models from natural language supervision // arXiv preprint arXiv: 2103.00020, 2021 – URL: https://arxiv.org/abs/2103.00020

Ho J., Jain A., Pieter Abbeel / Denoising Diffusion Probabilistic Models // arXiv preprint arXiv: 2006.11239, 2020 – URL: https://arxiv.org/abs/2006.11239

Image Generation API, OpenAI [Электронный ресурс] // URL: https://platform.openai.com/docs/guides/images-vision?api-mode=responses (дата обращения 25.04.2025)

Brown T. B., Subbiah M., Mann B. [и др.] / Language Models are Few-Shot Learners // arXiv preprint arXiv: 2005.14165, 2020 – URL: https://arxiv.org/abs/2005.14165

Hinton G., Vinyals O., Dean J / Distilling the Knowledge in a Neural Network // arXiv preprint arXiv: 1503.02531, 2015 – URL: https://arxiv.org/abs/1503.02531

Nikolaj Buhl / OpenAI’s DALL-E 3 Explained: Generate Images with ChatGPT // URL: https://encord.com/blog/openai-dall-e-3-what-we-know-so-far/ (дата обращения: 26.04.2025)

Published

2025-05-20

How to Cite

Ibragimov, D., & Abdullayev, T. (2025). Knowledge automation: Artificial Intelligence in school education. The Descendants of Al-Fargani, (2), 7–14. Retrieved from http://al-fargoniy.uz/index.php/journal/article/view/812