USING DEEP LEARNING ALGORITHMS TO DETECT HUMAN EYES IN VIDEO IMAGES.
Keywords:
machine learning, visual computing, deep neural networks, video data analysis, digital image processing, facial feature extraction, live video analysis, visual object detectionAbstract
Abstract. In today's fast-paced world, images have become one of the industries that help. This field has helped solve many of the services available in various fields, from surveillance to human-computer interaction. At the heart of this transformation is the problem of distinguishing between video frame problems and accurately detecting human eyes. This technology is the result of the development of interesting computer vision techniques and deep learning algorithms
References
Foydalanilgan adabiyotlar
Papoutsaki, A., Daskalova, N., Sangkloy, P., Huang, J., Laskey, J., & Hays, J. (2016). WebGazer: foydalanuvchi o‘zaro ta’siridan foydalangan holda kengaytiriladigan veb-kamera ko‘zni kuzatish. Sun'iy intellekt bo‘yicha IJCAI xalqaro qo‘shma konferentsiyasi , 2016-yanvar , 3839-3845.
Semmelmann, K. va Weigelt, S. (2018). Kognitiv fanda onlayn veb-kameraga asoslangan ko‘zni kuzatish: birinchi qarash. Xulq-atvorni o‘rganish usullari, 50 (2), 451-465. https://doi.org/10.3758/s13428-017-0913-7
Ehinger, BV, Groß, K., Ibs, I., & König, P. (2019). Pupil Labs ko‘zoynaklari va EyeLink 1000 ni bir vaqtda baholovchi yangi keng qamrovli ko‘zni kuzatish uchun sinov batareyasi. PeerJ, 2019 (7), 1–43. https://doi.org/10.7717/peerj.7086
Adhikari, S. va Stark, DE (2017). Neyropsikiyatrik baholash uchun videoga asoslangan ko‘zni kuzatish: neyropsikiyatrik baholashni kuzatish. Ann. NY akad. Sci. 1387, 145–152. doi: 10.1111/nyas.13305
Lemley, J., Kar, A., Drimbarean, A. va Corcoran, P. (2018). Kam quvvatli/past sifatli iste'molchi tasvirlash tizimlarida ko‘z qarashlarini baholash uchun samarali CNN ilovasi. ArXiv [Preprint]. ArXiv: 1806.10890. Onlayn manzilda: http://arxiv.org/abs/1806.10890 (2020-yil 4-noyabrda foydalanish mumkin).
Zdarsky, Niklas and Treue, Stefan and Esghaei, Moein, A Deep Learning-Based Approach to Video-Based Eye Tracking for Human Psychophysics. Frontiers in Human Neuroscience. DOI:10.3389/fnhum.2021.685830. https://www.frontiersin.org/articles/10.3389/fnhum.2021.685830
Saxena, S., Fink, L.K. & Lange, E.B. Deep learning models for webcam eye tracking in online experiments. Behav Res (2023). https://doi.org/10.3758/s13428-023-02190-6
Additional Files
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Dilshod Djabbarov, Muhammadmullo Asrayev, Xumora G‘oipova

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.