Design and optimization of the stationary lower limb gait rehabilitation exoskeleton
Ключевые слова:
lower limb exoskeleton, mechanical design, stationary exoskeleton, rehabilitation roboticsАннотация
This paper examines the mechanical design and optimization of a stationary lower limb exoskeleton for paraplegic patients undergoing indoor gait rehabilitation. The prototype integrates frame segments, joint modules, and physical interfaces. The study first analyzes global and regional demand for exoskeletons to define patient needs, gait phases, and design criteria. A systematic methodology, based on literature reviews, guides the design and optimization process using CAD modeling and simulation software to test motion cycles and validate performance. The paper concludes with recommendations and technical guidelines for future exoskeleton development and research.
Библиографические ссылки
Şipal, M. S., Yaşar, E., Özişler, Z., Adıgüzel, E., Yıldırım, S., Deler, Ö., Kirdiş, S., Çelik, H. İ., Uluşahin, S. B., Kayalar, G., & Karaduman, A. A. (2024). First report of a new exoskeleton in incomplete spinal cord injury: FreeGait®. Journal of Spinal Cord Medicine, 1–11. https://doi.org/10.1080/10790268.2024.2426314
Forte, G., Leemhuis, E., Favieri, F., Casagrande, M., Giannini, A. M., De Gennaro, L., & Pazzaglia, M. (2022). Exoskeletons for Mobility after Spinal Cord Injury: A Personalized Embodied Approach. Journal of Personalized Medicine, 12(3), 380. https://doi.org/10.3390/jpm12030380
Market Report Analytics. (n.d.). Lower Limb Exoskeleton Rehabilitation Robot Market Overview. https://www.marketreportanalytics.com/reports/lower-limb-exoskeleton-rehabilitation-robot-272360#summary
Global Growth Insights. (n.d.). Lower limb exoskeleton market report. https://www.globalgrowthinsights.com/market-reports/lower-limb-exoskeleton-market-110328
World Health Organization Regional Office for Europe. (2023, April 5). WHO helps Uzbekistan to strengthen rehabilitation services and assistive technology. https://www.who.int/europe/news/item/05-04-2023-who-helps-uzbekistan-to-strengthen-rehabilitation-services-and-assistive-technology
Kun.uz. (2022, January 31). The World Bank highlights challenges faced by people with disabilities in Uzbekistan. https://kun.uz/en/news/2022/01/31/world-bank-highlights-challenges-faced-by-people-with-disabilities-in-uzbekistan
Zhang, Y., De Groof, S., Peyrodie, L., & Labey, L. (2020). Mechanical Design of an Exoskeleton with Joint-Aligning Mechanism for Children with Cerebral Palsy. 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), 106–111. https://doi.org/10.1109/biorob49111.2020.9224383
Wang, J., Pang, Y., Chang, X., Chen, W., & Zhang, J. (2019, June). Mechanical design and optimization on lower limb exoskeleton for rehabilitation. In 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA) (pp. 137–142). IEEE. https://doi.org/10.1109/ICIEA.2019.8833906
Narayan, J., Kalani, A., & Dwivedy, S. K. (2022). Lower extremity exoskeleton device for Motion Assistance and GAIT Rehabilitation: design Considerations. In Springer eBooks (pp. 1083–1100). https://doi.org/10.1007/978-3-030-84205-5_25
Li, Y., Guan, X., Han, X., Tang, Z., Meng, K., Shi, Z., Penzlin, B., Yang, Y., Ren, J., Yang, Z., Li, Z., Leonhardt, S., & Ji, L. (2020). Design and preliminary validation of a lower limb exoskeleton with compact and modular actuation. IEEE Access, 8, 66338–66352. https://doi.org/10.1109/access.2020.2985910
Pina, D. S., Fernandes, A. A., Jorge, R. N., & Gabriel, J. (2018). Designing the mechanical frame of an active exoskeleton for gait assistance. Advances in Mechanical Engineering, 10(2). https://doi.org/10.1177/1687814017743664
Yang, K., Jiang, Q. F., Wang, X. L., Chen, Y. W., & Yan, X., MA. (2018). Structural design and modal analysis of exoskeleton robot for rehabilitation of lower limb. Journal of Physics Conference Series, 1087, 062004. https://doi.org/10.1088/1742-6596/1087/6/062004
Wang, Y., Wu, X., Fang, Y., Osawa, K., Nakagawa, K., Yamasaki, S., & Tanaka, E. (2024). Design, control, and analysis of a 3-Degree-of-Freedom Kinematic–Biologically matched hip joint structure for lower limb exoskeleton. Machines, 12(12), 924. https://doi.org/10.3390/machines12120924
Zhu, Z., Liu, L., Zhang, W., Jiang, C., Wang, X., & Li, J. (2024). Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation. Frontiers in Neuroscience, 18. https://doi.org/10.3389/fnins.2024.1355052
Stańczyk, B., Jarzyna, O., Kunikowski, W., Grzelczyk, D., Mrozowski, J., & Awrejcewicz, J. (2022). Lower Limb Rehabilitation Exoskeleton with a Back Support – Mechanical Design. In Springer proceedings in mathematics & statistics (pp. 205–218). https://doi.org/10.1007/978-3-030-77306-9_18
Grzelczyk, D., Jarzyna, O., & Awrejcewicz, J. (2022). Modelling and control of a lower limb exoskeleton driven by linear actuators. In Springer proceedings in mathematics & statistics (pp. 119–131). https://doi.org/10.1007/978-3-030-77306-9_11
Rakhmatillaev, J., Bucinskas, V., Juraev, Z., Kimsanboev, N., & Takabaev, U. (2024). A recent lower limb exoskeleton robot for gait rehabilitation: a review. Robotic Systems and Applications. https://doi.org/10.21595/rsa.2024.24662
Htet, Y., Behera, B., & Joseph, F. O. M. (2025). Lower extremity exoskeletons: A systematic review on design, control, and sensing. Engineering Research Express. https://doi.org/10.1088/2631-8695/ada663
Ballen-Moreno, F., Gomez-Vargas, D., Langlois, K., Veneman, J., Cifuentes, C. A., & Múnera, M. (2021). Fundamentals for the design of Lower-Limb Exoskeletons. In Springer eBooks (pp. 93–120). https://doi.org/10.1007/978-3-030-79630-3_3
Del Carmen Sanchez-Villamañan, M., Gonzalez-Vargas, J., Torricelli, D., Moreno, J. C., & Pons, J. L. (2019). Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. Journal of NeuroEngineering and Rehabilitation, 16(1). https://doi.org/10.1186/s12984-019-0517-9
Hasan, S., & Alam, N. (2025b). Comprehensive Comparative Analysis of Lower limb exoskeleton Research: Control, design, and application. Actuators, 14(7), 342. https://doi.org/10.3390/act14070342
Aristizabal-Aristizabal, J., Ferro-Rugeles, R., Lancheros-Vega, M., M, S. D. S., Múnera, M., & Cifuentes, C. A. (2021). Fundamentals for the design of smart walkers. In Springer eBooks (pp. 121–141). https://doi.org/10.1007/978-3-030-79630-3_4
Rakhmatillaev, J., Bucinskas, V., & Kabulov, N. (2025). An integrative review of control strategies in robotics. Robotic Systems and Applications. https://doi.org/10.21595/rsa.2025.25014
Загрузки
Опубликован
Как цитировать
Лицензия
Copyright (c) 2025 Umidjon Takabaev, Nodirbek Kimsanboev, Javlonbek Rahmatillayev, Zafar Juraev

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
