DESIGN OF A SYSTEM FOR GENERATING DOCUMENT TEMPLATES BASED ON EXISTING DOCUMENTS

Authors

Keywords:

document templates, dynamic generation, machine learning, information system architecture, document workflow

Abstract

This article discusses the design of a dynamic document template generation system based on existing documents and rule-based mechanisms. Methods of automating document workflows and generating flexible document templates tailored to organizational needs using Machine Learning (ML) and rule-based systems are analyzed. The mathematical model of document generation, clustering and classification algorithms, information system architecture, and component diagrams are developed. The system enables workflow optimization, human resource savings, and automatic document generation improvement.

Author Biographies

Batirbek Samandarov, Mamun university; Tashkent University of Information Technologies named after Muhammad al-Khwarizmi

PhD, Associate Professor, Mamun university; Researcher at Tashkent University of Information Technologies named after Muhammad al-Khwarizmi

Baxtiyorjon Akbaraliyev, Andijan State University

Rector of Andijan State University

Guzal Gulmirzaeva, Tashkent University of Information Technologies named after Muhammad al-Khwarizmi

PhD student at Tashkent University of Information Technologies named after Muhammad al-Khwarizmi

References

Nishanov A., Akbaraliyev B., Xoliqnazarov R. Dinamik hujjat aylanish tizimini ishlab chiqish jarayonini modellashtirish // Raqamli transformatsiya va sun'iy intellekt ilmiy jurnali. 2023. No. 1(2), 168–172 b.

Xoliqnazarov R.X. Информационная модель электронного документооборота в крупномасштабных объектах // “Научно–технический журнал ФерПИ”. 2019. Том.23. № 2. – С.101-106

Samandarov B.S., Tajibaev Sh.X. Zamonaviy tibbiyot axborot tizimlari uchun jarayon modellarini loyihalash masalasi // Raqamli Transformatsiya va Sun’iy Intellekt ilmiy jurnali, 2024. Vol. 2(1), 176–181 b.

Tomer, M., & Kumar, M. Multi-document extractive text summarization based on firefly algorithm // Journal of King Saud University - Computer and Information Sciences. 2022. Vol. 34, Issue 8, pp. 6057–6065

Aanchal, Nidhi, Preeti, & Gurpratap. Automatic Cropping of Handwritten Scanned Documents with Object Detection Algorithm // Procedia Computer Science. 2023. Vol. 218, pp. 1733–1741

Bilal, M., Hamza, A., & Malik, N. NLP for Analyzing Electronic Health Records and Clinical Notes in Cancer Research: A Review // Journal of Pain and Symptom Management. 2025.

Gerling, C., & Lessmann, S. Multimodal Document Analytics for Banking Process Automation // Information Fusion. 2025. Vol. 118, pp. 102973)

Jaakkola, H & Thalheim, B. (2011). Architecture-driven modeling methodologies. In: Proceedings of the 2011 conference on Information Modelling and Knowledge Bases XXII. Anneli Heimbürger et al. (eds). IOS Press.

Alagah A. D., Tende F. B. Information System Architecture and Enterprise Resource Planning: A Solution For Organising Business Information. International Journal of Business Education and Management Studies (IJBEMS). Vol.4. Issue 1. 2022 (April). pp. 1 – 16

Bakar, N.A.A., Yaacob, S., Hussein, S.S., Nordin, A. & Sallehuddin, H. (2019). Dynamic metamodel approach for government enterprise architecture model management. 5th Information System International Conference, 2019. Procedia Computer Science, 161(2019), pp. 894 – 902.

Самандаров Б.С., Нуруллаев Ж.А. Дастурий воситаларни web иловалар кўринишида ишлаб чиқишнинг аҳамияти // «Ахборот коммуникация технологиялари ва дастурий таъминот яратишда инновацион ғоялар» Республика илмий-техник анжумани. Самарқанд-2019. –Б. 50-52

Published

2025-03-23

How to Cite

Samandarov, B., Akbaraliyev, B., Xoliqnazarov, R., & Gulmirzaeva, G. (2025). DESIGN OF A SYSTEM FOR GENERATING DOCUMENT TEMPLATES BASED ON EXISTING DOCUMENTS. The Descendants of Al-Fargani, 1(1), 76–82. Retrieved from http://al-fargoniy.uz/index.php/journal/article/view/776

Most read articles by the same author(s)