TIBBIY TASHXISNI ANIQLASH JARAYONIDA KLASSIFIKATSIYA ALGORTIMIDAN FOYDALANISHNING TAHLILI.

Authors

  • Dildora Sotvoldiyeva TUIT
  • Sardorbek Karimov
  • Yahyobek Mehmonaliyev

Keywords:

Classification algorithms, medical diagnosis, artificial intelligence, data analysis, logistic regression, random forests, neural networks, machine learning, personalized medicine, diagnostic technology.

Abstract

The use of contemporary artificial intelligence technology in the healthcare industry is examined in this article, particularly emphasizing the function of classification algorithms in diagnostic procedures. It thoroughly analyzes popular techniques like neural networks, logistic regression, random forests, K-nearest neighbors (KNN), and support vector machines (SVM). The results highlight how important classification algorithms are for enhancing medical diagnoses by facilitating accurate and individualized treatment plans. Researchers, developers, and medical practitioners who are interested in using artificial intelligence in healthcare procedures will find this article to be a useful resource.

References

Foydalanilgan Adabiyotlar.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques.

Zhang, H. (2004). The Optimality of Naive Bayes. Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference.

Khatamjonovich, F. M. (2024). Information Security Threats: Concept, Classification and its Place in the Framework of the National Security Strategy. Miasto Przyszłości, 53, 1126–1127. Retrieved from http://miastoprzyszlosci.com.pl/index.php/mp/article/view/5015

Abdumalik, X., & Muhammadali, F. (2024). THE ETHICAL CONSIDERATIONS OF TECHNOLOGY ADVANCEMENTS, SUCH AS PRIVACY AND SURVEILLANCE ISSUES. Universum: технические науки, 6(6 (123)), 48-49.

Khalilov, D., Bozorova, S., Khonturaev, S., Khoitkulov, A., Sotvoldieva, D., & Toshmatov, S. (2024, November). Self-learning system and methods of selection of weight coefficients of neural network. In E3S Web of Conferences (Vol. 508, p. 04011). EDP Sciences.

Khonturaev, S. I., & ugli Kodirov, A. A. (2023). REVOLUTIONIZING COTTON PICKING: THE ROLE OF AI IN AGRICULTURE. Educational Research in Universal Sciences, 2(10), 354-356.

SARVINOZ, T. (2023). DESIGN OF THE PREPARATION PROCESS SYSTEM FOR EVALUATION SYSTEMS IN SCHOOLS. International Multidisciplinary Journal for Research & Development, 10(11).

Sarvinoz, T., & Madina, K. (2023). INVESTIGATION INTO LOCAL NETWORKS: TRAITS, VARIETIES, AND TRANSPORT LAYER PROTOCOLS. Yangi O’zbekiston taraqqiyotida tadqiqotlarni o’rni va rivojlanish omillari, 2(2), 116-126.

Каримов С. И. Структурная стратегия формирования дистанционного мониторинга земель сельскохозяйственного назначения // Современные методы прикладной математики, теории управления и компьютерных технологий (ПМТУКТ-2021). – 2021. – С. 59-62.

Sotvoldieva, D. (2023). Frequency analysis of the signal. Best Journal of Innovation in Science, Research and Development, 2(11), 693-699.

Published

2025-03-23

How to Cite

Sotvoldiyeva, D., Karimov, S., & Mehmonaliyev, Y. (2025). TIBBIY TASHXISNI ANIQLASH JARAYONIDA KLASSIFIKATSIYA ALGORTIMIDAN FOYDALANISHNING TAHLILI. The Descendants of Al-Fargani, 1(1), 124–127. Retrieved from http://al-fargoniy.uz/index.php/journal/article/view/750

Issue

Section

Статьи

Categories