FORECASTING AND OPTIMIZATION OF THE IMPACT OF WEATHER CONDITIONS ON BLOOD PRESSURE-RELATED DISEASES USING THE MLP MODEL
Keywords:
MLP (Multilayer Perceptron), yurak qon bosimi kasalliklari,ob-havo sharoitlari, chuqur o‘rganish (deep learning), yashirin qatlamlar, epoxlar, bashorat qilish, profilaktika choralar, neyron tarmoq.Abstract
This article describes the use of a Multilayer Perceptron (MLP) neural network to study and predict the impact of weather conditions on blood pressure-related diseases. It has been determined that weather elements such as temperature, atmospheric pressure, humidity, wind speed, and geomagnetic storms significantly influence blood pressure-related diseases. During the study, the effectiveness of the MLP model was enhanced by optimizing parameters such as the number of hidden layers and the number of epochs. Experimental results demonstrated that a model with 2 hidden layers and 100 epochs achieved the highest accuracy and reliable predictions.
References
Городецкий В. И., Серебряков С. В. Методы и алгоритмы коллективного распознавания: обзор // Труды СПИИРАН. Вып. 3, т. 1. — СПб.: Наука, 2006
Kabildjanov Aleksandr Sabitovich. Методы обработки и формирование экспериментальных данных. O’quv qo’llanma. Toshkent. 2018. 44-62-sahifalar.
Kabildjanov Aleksandr Sabitovich va boshqalar. Методы обработки экспериментальных данных. O’quv qo’llanma. Toshkent 2003. 96 sahifa.
Cybenko, G. 1989. Approximation by superpositions of a sigmoidal function Mathematics of Control, Signals, and Systems, 2(4), 303–314.
Pulatov, G., Kabildjanov, A., & Pulatova, G. (2024). АНАЛИТИЧЕСКИЙ АНАЛИЗ ВЛИЯНИЯ ПОГОДНЫХ УСЛОВИЙ НА СЕРДЕЧНО-СОСУДИСТЫЕ ЗАБОЛЕВАНИЯ. Потомки Аль-Фаргани, 1(2), 296–300.
Additional Files
Published
How to Cite
License
Copyright (c) 2024 Giyos Pulatov, Aleksandr Kabildjanov, Gulxayo Pulatova

This work is licensed under a Creative Commons Attribution 4.0 International License.