PREDICTION OF THE INFLUENCE OF WEATHER CONDITIONS ON HEART BLOOD PRESSURE DISEASES BASED ON THE LSTM MODEL

Authors

  • Giyos Pulatov TIIAME NRU
  • Aleksandr Kabildjanov
  • Gulxayo Pulatova

Keywords:

Yurak-qon bosimi kasalliklari, LSTM modeli, ob-havo sharoitlari, chuqur o‘rganish, bashorat qilish tizimlari, profilaktika, sog‘liqni saqlash tizimi.

Abstract

Cardiovascular diseases are widespread globally and are one of the leading causes of mortality. This study uses the LSTM (Long Short-Term Memory) deep learning model to predict the impact of weather conditions (temperature, atmospheric pressure, relative humidity, wind speed, and geomagnetic activity) on cardiovascular diseases. The findings demonstrate the model's high accuracy, making it a valuable tool for preventive measures and healthcare. This work lies at the intersection of medicine, meteorology, and artificial intelligence, fostering interdisciplinary collaboration.

References

Kabildjanov Aleksandr Sabitovich. Методы обработки и формирование экспериментальных данных. O’quv qo’llanma. Toshkent. 2018. 44-62-sahifalar.

Pulatov, G., Kabildjanov, A., & Pulatova, G. (2024). АНАЛИТИЧЕСКИЙ АНАЛИЗ ВЛИЯНИЯ ПОГОДНЫХ УСЛОВИЙ НА СЕРДЕЧНО-СОСУДИСТЫЕ ЗАБОЛЕВАНИЯ. Потомки Аль-Фаргани, 1(2), 296–300.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780.

Zhang, Z., Wang, W., & Liu, J. (2020). Deep Learning Models for Time-Series Analysis: Applications in Medicine. IEEE Access, 8, 158015–158025.

Published

2024-12-26

How to Cite

Pulatov, G., Kabildjanov, A., & Pulatova, G. (2024). PREDICTION OF THE INFLUENCE OF WEATHER CONDITIONS ON HEART BLOOD PRESSURE DISEASES BASED ON THE LSTM MODEL. The Descendants of Al-Fargani, (4), 173–177. Retrieved from http://al-fargoniy.uz/index.php/journal/article/view/720

Issue

Section

Статьи

Categories