KLASTERLASH USULLARI YORDAMIDA NUTQNI AVTOMATIK SEGMENTATSIYALASH

Authors

  • Johongir Urinboev RTSIR ITI
  • Mavluda Nugmanova

Keywords:

Biharmonic equation, semicircle, non-correct problem, approximate solution, Laplace operator, conditional correctness, stability theorem, Fourier series, regularization method, Hilbert space, Fredholm equation.

Abstract

This paper analyzes the effectiveness of modern clustering algorithms for automatic segmentation of speech signals. Segmentation methods based on K-means, fuzzy c-means, and DBSCAN algorithms were applied, and the time boundaries of words were determined using these methods. The obtained results confirm the effectiveness of these algorithms in automatic speech processing. The work also describes an approach to defining precise word boundaries. The results were compared with other methods of speech signal segmentation.

References

Rasanen O. Speech Segmentation and Clustering Methods for a New Speech Recognition Architecture. Helsinki University of Technolo¬gy. - 2007. - P. 94.

Cherif A., Bouafif L., Dabbabi T. Pitch Detection and Formant Analysis of Arabic Speech Processing // Applied Acoustics. - 2001. - Vol. 62. - P. 1129-1140. DOI: 10.1016/S0003-682X(01)00007-X

Sharma M., Mammone R. Subword-based text-dependent speaker verification system with user-selectable passwords // IEEE International Conference on Acoustics, Speech and Signal Processing. - 1996. - Vol. 1. - P. 93-96. DOI: 10.1109/ICASSP.1996.540298

Hioka Y., Hamada N. Voice activity detection with array signal processing in the wavelet domain // 11th European Signal Processing Con-ference. - 2002. - P. 1-4.

Beritelli F., Casale S. Robust voiced/unvoiced speech classification using fuzzy rules // IEEE Workshop on Speech Coding for Telecommunica¬tions. - 1997. - P. 5-6. DOI: 10.1109/SCFT.1997.623868

Qi Y., Hunt B. R. Voiced-unvoiced-silence classifications of speech using hybrid features and a network classifier // IEEE Transactions on Speech and Audio Pressing. - 1993. - Vol. 1. - P. 250-255. DOI: 10.1109/89.222883

Basu S. A linked-HMM model for robust voicing and speech detec¬tion // IEEE International Conference on Acoustics, Speech and Signal Pro¬cessing (ICASSP’03). - 2003. - Vol. 1. - P. 816-819.

Thangarajan R., Natarajan M., Selvam M. Syllable modeling in continuous speech recognition for Tamil language // International Journal of Speech Technology. - 2009. - Vol. 12. - P. 47-57. DOI: 10.1007/s10772- 009-9058-0

Kvale K. Segmentation and Labeling of Speech // Norwegian Insti¬tute of Technology. - 1993. - P. 271.

Rahman M., Bhuiyan A. Continuous Bangla Speech Segmentation using Short-term Speech Features Extraction Approaches // International Journal of Advanced Computer Science and Application (IJACSA). - 2012. - Vol. 3. - P. 131-138.

SaiJayram A.K.V., Ramasubramanian V., Sreenivas T.V. Robust parameters for automatic segmentation of speech // IEEE International Con-ference on Acoustics, Speech and Signal Processing. - 2002. - Vol. 1. - P. 513-516. DOI: 10.1109/ICASSP.2002.5743767

Webb A. Statistical Pattern Recognition // John Wiley & Sons, New Jersey. - 2002. - Р. 496. DOI: 10.1002/0470854774

Tan P.N., Steinbach M., Kumar V. Introduction to Data Mining // Addison-Wesley, Boston. - 2005. - P. 769.

Alpaydin E. Introduction to Machine Learning // MIT Press, Cam-bridge. - 2016. - Р. 206. DOI: 10.1017/S0269888906220745

Hathway R.J., Bezdek J. Optimization of Clustering Criteria by Reformulation // IEEE Transaction on Fuzzy Systems. - 1995. - Vol. 3. - P. 241-245. DOI: 10.1109/91.388178

Philipose S.S. A Triclass Image Segmentation using Adaptive K- means Clustering and Otsu’s Method // International Journal of Engineering Research and General Science. - 2015. - Vol. 3. - P. 134-138.

Shanthi T., Chelpa L. Isolated word speech recognition system us-ing HTK // International Journal of Computer Science Engineering and In-formation Technology Research. - 2014. - Vol. 4. - P. 81-86.

Kriegel H.-P., Schubert E., Zimek A. The (black) art of runtime evaluation: Are we comparing algorithms or implementations? Knowledge and Information Systems. 2016. Vol. 52.No. 2. P. 341.

Published

2024-12-28

How to Cite

Urinboev, J., & Nugmanova, M. (2024). KLASTERLASH USULLARI YORDAMIDA NUTQNI AVTOMATIK SEGMENTATSIYALASH. The Descendants of Al-Fargani, (4), 220–225. Retrieved from http://al-fargoniy.uz/index.php/journal/article/view/626

Most read articles by the same author(s)