Использование средств искусственного интеллекта для контроля и оценки образования

Авторы

  • Нарзилло Маматов
  • Санжар Иброхимов TIIAME NRU
  • Вохид Маматов
  • Абдурашид Самижонов

Ключевые слова:

Sun’iy intellekt, IRT, TTQI, video konferensiya vositalari, kengaytirilgan reallik, virtual reallik

Аннотация

Искусственный интеллект (ИИ) трансформирует многие отрасли, и образование не является исключением. Быстрая поддержка ИИ стала необходимой для учителей и специалистов по управлению образованием для улучшения преподавания и обучения. Обучение на основе ИИ – это создание видения, персонализированная обратная связь для учащихся и предоставление учителям собственного уникального программного обеспечения. Это обеспечивает адаптацию образовательных стратегий. Таким образом, ИИ может произвести революцию в способах предоставления образования и улучшить образовательную поддержку учащихся. В этой исследовательской статье исследуются различные вклады развития ИИ в измерение и контроль в образовании.

Библиографические ссылки

Halaweh, M. (2023). ChatGPT in education: Strategies for responsible implementation. Contemporary Educational Technology, 15(2), ep421. https://doi.org/10.30935/cedtech/13036

Mena-Guacas, A. F., Urueña Rodríguez, J. A., Santana Trujillo, D. M., Gómez-Galán, J., & López-Meneses, E. (2023). Collaborative learning and skill development for educational growth of artificial intelligence: A systematic review. Contemporary Educational Technology, 15(3), ep428. https://doi.org/10.30935/cedtech/13123

Papapicco, C. (2020). Google mini: Italian example of artificial pro-sociality. Online Journal of Communication and Media Technologies, 10(3), e202015. https://doi.org/10.29333/ojcmt/7995

Adiguzel, T., Kaya, M. H., & Cansu, F. K. (2023). Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. Contemporary Educational Technology, 15(3), ep429. https://doi.org/10.30935/cedtech/13152

Lin, P. Y., Chai, C. S., Jong, M. S. Y., Dai, Y., Guo, Y., & Qin, J. (2021). Modelling the structural relationship among primary students’ motivation to learn artificial intelligence. Computers and Education: Artificial Intelligence, 2, 100006. https://doi.org/ 10.1016/j.caeai.2020.100006

Xia, Q., Chiu, T. K. F, Lee, M., Temitayo I., Dai, Y., & Chai, C. S. (2022). A self-determination theory design approach for inclusive and diverse artificial intelligence (AI) K-12 education. Computers & Education, 189, 104582. https://doi.org/10.1016/j. compedu.2022.104582

Huang, A. Y., Lu, O. H., & Yang, S. J. (2023a). Effects of artificial intelligence-enabled personalized recommendations on learners’ learning engagement, motivation, and outcomes in a flipped classroom. Computers & Education, 194, 104684. https://doi.org/10.1016/j.compedu.2022.104684

Nazari, N., Shabbir, M. S., & Setiawan, R. (2021). Application of artificial intelligence powered digital writing assistant in higher education: Randomized controlled trial. Heliyon, 7(5), e07014. https://doi.org/10.1016/j.heliyon.2021.e07014

Hou, J., Li, Z., & Liu, G. (2022). Macro education approach to improve learning interest under the background of artificial intelligence. Wireless Communications and Mobile Computing, 2022, 4295887. https://doi.org/10.1155/2022/4295887

Karsenti, T. (2019). Artificial intelligence in education: The urgent need to prepare teachers fortomorrow’s schools. Formation et Profession [Education and Profession], 27(1), 112-116. https://doi.org/10. 18162/fp.2019.a166

Hawes, D., & Arya, A. (2023). Technology solutions to reduce anxiety and increase cognitive availability in students. IEEE Transactions on Learning Technologies, 16(2), 278-291. https://doi.org/10. 1109/TLT.2023.3239985

Kumar, N. S. (2019). Implementation of artificial intelligence in imparting education and evaluating student performance. Journal of Artificial Intelligence, 1(01), 1-9. https://doi.org/10.36548/jaicn.2019.1. 001

Luo, Y., Han, X., & Zhang, C. (2022). Prediction of learning outcomes with a machine learning algorithm based on online learning behavior data in blended courses. Asia Pacific Education Review. https://doi.org/10.1007/s12564-022-09749-6

Khan, I., Ahmad, A. R., Jabeur, N., & Mahdi, M. N. (2021). An artificial intelligence approach to monitor student performance and devise preventive measures. Smart Learning Environments, 8(1), 1-18. https://doi.org/10.1186/s40561-021- 00161-y

Owan, V. J., Abang, K. B., Idika, D. O., Etta, E. O., & Bassey, B. A. (2023). Exploring the potential of artificial intelligence tools in educational measurement and assessment. Eurasia Journal of Mathematics, Science and Technology Education, 19(8), em2307. https://doi.org/10.29333/ejmste/13428

O.Babomuradov, B Otaxonova, NS Mamatov, LB Boboev. Text documents classification in Uzbek language. International journal of recent technology and engineering 8 (2S11), 3787-3789

N. A. Niyozmatova, N. S. Mamatov, B. I. Otaxonova, A. N. Samijonov and K. K. Erejepov, "Classification Based On Decision Trees and Neural Networks," 2021 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2021, pp. 01-04, doi: 10.1109/ICISCT52966.2021.9670345

Mamatov, N. S., Niyozmatova, N. A., Jalelova, M. M., Samijonov, A. N., & Tojiboyeva, S. X. (2023). Methods for improving contrast of agricultural images. In E3S Web of Conferences (Vol. 401, p. 04020). EDP Sciences.

Mamatov, N., Pulatov, G., & Jalelova, M. (2023). Тасвир контрастини ошириш усули ва контраст баҳолаш мезон оптимал жуфтлиги. Digital transformation and artificial intelligence, 1(2), 158–167. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v1i225

Wiedecke, Bernd & Mamatov, Narzillo & Payazov, Mirabbos & Samijonov, Abdurashid. (2019). Acoustic Signal Analysis and Identification. International Journal of Innovative Technology and Exploring Engineering. 8. 2440-2442. 10.35940/ijitee. J9522.0881019.

Mamatov, N., Niyozmatova, N., Samijonov, A. 2021. Software for preprocessing voice signals. International Journal of Applied Science and Engineering, 18, 2020163. https://doi.org/10.6703/IJASE.202103_18(1).006

Narzillo, M., Abdurashid, S., Parakhat, N., & Nilufar, N. (2019). Automatic speaker identification by voice based on vector quantization method. International Journal of Innovative Technology and Exploring Engineering, 8(10), 2443–2445. https://doi.org/10.35940/ijitee.J9523.0881019

Mamatov, Narzillo & Samijonov, Abdurashid & Nilufar, Niyozmatova. (2019). Karakalpak Speech Recognition with CMU Sphinx. International Journal of Innovative Technology and Exploring Engineering. 8. 2446-2448. 10.35940/ijitee. J9524.0881019.

Mamatov, Narzillo & Niyozmatova, N. & Abdullaev, Sh & Samijonov, Abdurashid & Erejepov, K. (2021). Speech Recognition Based On Transformer Neural Networks. 1-5. 10.1109/ICISCT52966.2021.9670093.

Mamatov, N., Dusanov, X., & Pulatov, G. (2023). SHAXSNI OVOZI ASOSIDA TANIB OLISH USULLARI. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 1(2), 90–95. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v1i218

Bassey, B. A., Ubi, I. O., Anagbogu, G. E., & Owan, V. J. (2020). Permutation of UTME multiple-choice test items on performance in use of English and mathematics among prospective higher education students. The Journal of Social Sciences Research, 6(4), 483-493. https://doi.org/10.32861/jssr.64.483.493

S. Ibrokhimov, K. L. Hui, A. Abdulhakim Al-Absi, h. j. lee and M. Sain, "Multi-Factor Authentication in Cyber Physical System: A State of Art Survey," 2019 21st International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea (South), 2019, pp. 279-284, doi: 10.23919/ICACT.2019.8701960.

Опубликован

2023-12-11

Как цитировать

Маматов, Н., Иброхимов, С., Маматов, В., & Самижонов, А. (2023). Использование средств искусственного интеллекта для контроля и оценки образования. Потомки Аль-Фаргани, 1(4), 291–297. извлечено от http://al-fargoniy.uz/index.php/journal/article/view/111