ENDOKRIN KASALLTKLAR PROFILAKTIKASI VA ERTA TASHXISLASHNING MATEMATIK MODELLARI

Authors

  • Farxod Mengturayev Denov tadbirkorlik va pedagogika instituti
  • Axram Nishanov
  • Uktamjon Allayarov
  • Sherali Xaydarov

Keywords:

Endocrine diseases, prevention, early diagnosis, mathematical modeling, classification, clustering.

Abstract

This study examines the mathematical modeling methods for the prevention and early diagnosis of endocrine diseases. The research applies probability theory, statistical analysis, classification algorithms, and clustering methods to develop approaches for optimizing the diagnostic process. The results indicate that mathematical models play a significant role in improving diagnostic accuracy and efficiently allocating healthcare resources. Specifically, the use of Bayes' theorem for calculating disease probability, identifying risk groups through clustering algorithms, and predicting disease progression via dynamic forecasting approaches has been proven effective. Systematic analysis of the collected data creates opportunities to enhance prevention effectiveness and develop individualized treatment plans.

References

1. Garrison, F. H., & Morton, R. S. (2018). Medical History. Endocrine System Disorders. London. Elsevier Publishing.

2. Jameson, J. L., & De Groot, L. J. (2020). Endocrinology. Adult and Pediatric. Philadelphia. Saunders.

3. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). (2021). "Advances in Endocrine Research." Bethesda. National Institutes of Health.

4. American Diabetes Association. (2021). "Standards of Medical Care in Diabetes—2021." Diabetes Care, 44(Supplement 1), S1–S232.

5. Melmed, S., Auchus, R. J., Goldfine, A. B., & Koenig, R. J. (2020). Williams Textbook of Endocrinology (14th ed.). Philadelphia. Elsevier.

6. Jameson, J. L., & De Groot, L. J. (2020). Endocrinology. Adult and Pediatric (8th ed.). Philadelphia. Elsevier.

7. Kumar, V., Abbas, A. K., & Aster, J. C. (2020). Robbins and Cotran Pathologic Basis of Disease (10th ed.). Philadelphia. Elsevier.

8. American Diabetes Association. (2021). "Standards of Medical Care in Diabetes—2021." Diabetes Care, 44(Supplement 1), S1–S232.

9. Cooper, D. S., & Biondi, B. (2019). "Subclinical Thyroid Disease." The Lancet, 379(9821), 1142–1154.

10. Gharib, H., Papini, E., & Garber, J. R. (2019). "AACE/ACE/AME Task Force on Thyroid Nodules. Management Guidelines." Endocrine Practice, 22(5), 622–639.

11. Graves, L., & Rees, A. (2018). "Diagnosis and Management of Endocrine Disorders in Pregnancy." Obstetrics, Gynaecology & Reproductive Medicine, 28(4),114–122.

12. Nussey, S., & Whitehead, S. (2019). Endocrinology. An Integrated Approach (2nd ed.). Oxford. Wiley-Blackwell.

13. Kronenberg, H. M., Melmed, S., Polonsky, K. S., & Larsen, P. R. (2018). Williams Textbook of Endocrinology (13th ed.). Philadelphia. Elsevier.

14. Gardner, D. G., & Shoback, D. (2020). Greenspan's Basic and Clinical Endocrinology (10th ed.). New York. McGraw-Hill Education.

15. Nishanov, A., Mamajanov , R., Xaydarov , S., Mengturayev , F., & Yuldashev , R. (2024). sut bezi saraton kasalliklarini simptomlarini mashinali o‘qitishga tayyorlash bosqichlari. digital transformation and artificial intelligence, 2(6), 237–249. Retrieved from

https://dtai.tsue.uz/index.php/dtai/article/view/v2i633

16. Nishanov, A., Mengturayev, F., Allayarov, U., & Xaydarov, S. (2024). endokrin kasalliklarini tashxislashda foydalaniladigan simptomlarni shakllantirish bosqichlari. digital transformation and artificial intelligence, 2(6), 228–236. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v2i632

17. Nishanov A.X., Jo‘rayev G‘.P.,Saparov S.X.,Zaripov F.M. Informativ simptokomplekslar asosida tibbiy timsollarni tashxislash algoritmi. “Muhammad al-Xorazmiy avlodlari” ilmiy-amaliy va axborot-tahliliy jurnali. №1(19). Toshkent-2022, 158 -165 b.

18. Nishanov, A. K., Djuraev, G. P., & Khasanova, M. A. (2020). Classification and feature selection in medical data preprocessing. Compusoft, 9(6), 3725-3732.

19. Nishanov, A. K., Ruzibaev, O. B., Chedjou, J. C., Kyamakya, K., Abhiram, K., De Silva, P., ... & Khasanova, M. A. (2020). Algorithm for the selection of informative symptoms in the classification of medical data. In Developments of Artificial Intelligence Technologies in Computation and Robotics. Proceedings of the 14th International FLINS Conference (FLINS 2020) (pp. 647-658).

20. Nishanov, A. H., Akbaraliev, B. B., & Tajibaev, S. K. (2020, October). About one feature selection algorithm in pattern recognition. In World Conference Intelligent System for Industrial Automation (pp. 103-112). Cham. Springer International Publishing.

21. Nishanov, A. K., Turakulov, K. A., & Turakhanov, K. V. (1999). A decision rule for identification of eye pathologies. Biomedical Engineering, 33, 178-179.

22. Nishanov, А. H., & Samandarov, B. S. (2015). Assessment model of monitoring and defining the completeness of course elements of information systems. Europaische Fachhochschule, (5), 56-58.

23. Nishanov, A. K., Allamov, O. T., Ruzibaev, O. B., Abdullaev, A. S., & Allamova, S. T. (2021, November). An approach to finding the most optimal route in a dynamic graph. In 2021 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 01-05). IEEE.

24. Atoev, S., Nishanov, A., & Abdirazakov, F. (2021, November). Object Tracking Method Based on Kalman Filter and Camshift Algorithm for UAV Applications. In 2021 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-4). IEEE.

25. Rakhmanov, A. T., Nishanov, A. K., Ruzibaev, O. B., & Shaazizova, M. E. (2020, November). On one method for solving the multi-class classification problem. In 2020 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-4). IEEE.

Published

2025-03-23

How to Cite

Mengturayev, F., Nishanov, A., Allayarov, U., & Xaydarov, S. (2025). ENDOKRIN KASALLTKLAR PROFILAKTIKASI VA ERTA TASHXISLASHNING MATEMATIK MODELLARI. The Descendants of Al-Fargani, 1(1), 187–194. Retrieved from http://al-fargoniy.uz/index.php/journal/article/view/743

Most read articles by the same author(s)