Сверточная нейронная сеть для классификации степени открытия хлопковой коробочки

Авторы

  • Azizjon Abdulhamidov a:1:{s:5:"ru_RU";s:4:"TGTU";}
  • Erkin Uljaev
  • Utkirjon Ubaydullayev

Ключевые слова:

computer vision, convolutional neural network, image classification, image segmentation, recurrent neural networks, model training, epoch, layers

Аннотация

Аннотация — Статья посвящена разработке алгоритма классификации степени раскрытия коробочек хлопка на основе сверточной нейронной сети. В исследовании использовалась нейронная сеть, состоящая из сверточных слоев, слоев субдискретизации и полносвязных слоев. Цель работы – классифицировать образцы коробочек хлопчатника по степени раскрытия. Критериями классификации являются минимизация количества ошибок и достижение высокой точности. В процессе создания алгоритма использовались данные, полученные с помощью компьютерных программ и программ обработки изображений. В данной работе был проведен ряд экспериментов с различными параметрами сверточных нейронных сетей и обучающими выборками для оптимизации процесса классификации. Окончательный алгоритм был протестирован на реальных образцах хлопка и продемонстрировал высокую точность классификации.

Библиографические ссылки

Surnina Anastasia Olegovna (2017). Elements of global optimization of neural network models. Academy, (3 (18)), 32-36.

Anokhin, M. A. (2014). A method for recognizing moving objects from their video images. East European Journal of Advanced Technologies, 4 (9 (70)), 33-37.

Rogal Andrei Alexandrovich (2016). Application of deep learning methods in the task of image recognition. IN SITU, (6), 13-17.

Uljaev E., Abdulhamidov A. Review of cotton recognition in the field for cotton harvester based on machine vision, Collection of the Republican Scientific and Practical Conference on "Digital technologies: solutions and problems of practical implementation in spheres" Tashkent University of Information Technology named after Muhammad al-Khorazmi Tashkent, April 27-28, 2022 - year, pp. 182-185.

Uljaev E., Abdulhamidov A. To the question of choosing a camera for recognizing raw cotton. Collection of scientific articles of XXVI International Scientific and Practical Conference "Innovation-2022", Tashkent State Technical University. Center for Strategic Innovation and Informatization, pp. 255-257.

Uljaev, E., Ubaydullaev, U., & Abdulhamidov, A. (2021). Selection of methods and sensors for controlling width change between moving objects. InterConf, (56).

Kh, S. I., Porubay, O. V., Lazareva, M. V., & Abdulkhamidov, A. A. (2020). Trends in the development of intelligent systems when making management decisions in Uzbekistan. International scientific journal" Universum: technical sciences, 2(71), 10-14.

Uljaev E., Ubaydullaev U., Abdulhamidov A., & Narzullaev Sh. (2022). Synthesis of optimal design of a device for control and regulation of working gaps of plucking apparatus of cotton picking machine with vertical spindle. ICoRSE, (564) 116-124.

Uljaev, E., Ubaydullaev, U., & Abdulhamidov, A. (2021). Analysis of the current state of automation of control and regulation of the working slit width of the harvesting unit of a cotton picker with a vertical spindle. InterConf, (48).

Uljaev E., Abdulhamidov A. Measurement of cotton bush width with application of technical vision and mathematical justification, Scientific and Technical Journal of Fergana Polytechnic Institute, 2023 Special Issue No. 2, pp. 248-251.

Abdulhamidov A., Uljaev E. Determination of cotton raw material openness degree with the help of technical vision. Registered in the State Register of Program Products of the Republic of Uzbekistan № DGU 23492, 18.03.2023 - year.

A. Azizjon and U. Erkin, "Selection of a camera for recognition of raw cotton and analysis of its main parameters," 2022 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2022, pp. 1-4, doi: 10.1109/ICISCT55600.2022.10146835.

A. Azizjon and U. Erkin, "Selection of a camera for recognition of raw cotton and analysis of its main parameters," 2022 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2022, pp. 1-4, doi: 10.1109/ICISCT55600.2022.10146835.

Artemyev, A. A., Kazachkov, E. A., Matyugin, S. N., & Sharonov V. V. (2020). Classification of surface objects on visible optical range images. Bulletin of VKO Concern Almaz-Antey, (1 (32)), 87-95.

Uljaev E., Abdulhamidov A. Selection of camera for cotton raw material recognition and adjustment of working slot mechanism of vertical-spindle cotton harvester by output signal from the camera, Andijan Engineering Institute "Role and importance of digital life and social sciences in education of mature generation: actual problems and prospects" International Scientific and Practical Conference. April 12, 2022 pp. 21-25.

Andrey Fedorovich Samorokovsky, & Andrey Andreevich Tolstykh (2019). Using artificial neural networks for object selection in topographic information processing. Bulletin of the Voronezh Institute of the Ministry of Internal Affairs of Russia, (4), 90-99.

Uzdyaev Mikhail Yurievich (2020). Recognition of aggressive actions using 3d-cnn neural network architectures. Izvestiya Tula State University. Technical Sciences, (2), 316-330.

Uljaev E., Abdulhamidov A. Analysis of work on control and regulation of the working slot of the harvesting machine and recognition of the contour of the controlled cotton field. Chemical technology control and management. International scientific and technical journal. 2022 № 2(104). Tashkent state technical university. Pp. 44-51.

Dmitry Yuryevich Klekho, Ekaterina Borisovna Karelina, & Yuri Pavlovich Batyrev (2021). Using convolutional neural network technology in image object segmentation. Forestry bulletin / Forestry bulletin, 25 (1), 140-145.

Uljaev E., Ubaydullaev U., Abdulhamidov A., Erkinov S. Analysis and selection of methods and sensors for controlling the width of the working slot of the harvesting machine HUM. Technical science and innovation, 2021, No. 3 (09), Tashkent 2021. Pages 207-216.

Uljaev E., Abdulhamidov A. Optimization of the structure of building the device of control and regulation of working slots of the harvesting apparatus of the vertical-spindle cotton harvesting machine. Samarkand branch of Tashkent University of Information Technologies named after Muhammad al-Khorazmi, collection of lectures of the republican scientific-practical conference on the theme "Modern information, communication technologies and problems of implementation in the education system", April 9, 2022, pp. 149 -151.

Akramova Gulera Abdikhalikova, Karimov Sardor Ilhom Ugli, & Abdulhamidov Azizjon Abdulla Ugli (2020). Measurement stability using peer-to-peer networks and optimization channels. Universum: Engineering Sciences, (2-1 (71)), 7-9.

I. Siddikov, O. Porubay, “Neural network model of decision making in electric power facilities under conditions of uncertainty,” in E3S Web of Conferences (ICECAE 2021), EDP Sciences, Sep. 2021, Vol. 304, p. 01001, doi: 10.1051/e3sconf/202130401001

I. K. Siddikov, O. V. Porubay, “Neuro-fuzzy system for regulating the processes of power flows in electric power facilities,” in AIP Conference Proceedings, AIP Publishing LLC, Jun. 2022, Vol. 2432, No. 1, p. 020010, doi: 10.1063/5.0089473

O. Porubay, I. Siddikov and K. Madina, "Algorithm for optimizing the mode of electric power systems by active power," 2022 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2022, pp. 1-4, doi: 10.1109/ICISCT55600.2022.10146996

I. Siddikov, O. Porubay, “An algorithm for optimizing short-term modes of electric power systems, taking into account the conditions of the nature of the probability of the information flow of data,” in Journal of Physics: Conference Series, IOP Publishing, Dec. 2022, Vol. 2373, No. 8, p. 082014, doi: 10.1088/1742-6596/2373/8/082014

Опубликован

2023-12-11

Как цитировать

Abdulhamidov, A., Uljaev, E., & Ubaydullayev, U. (2023). Сверточная нейронная сеть для классификации степени открытия хлопковой коробочки. Потомки Аль-Фаргани, 1(4), 31–36. извлечено от https://al-fargoniy.uz/index.php/journal/article/view/147

Выпуск

Раздел

Статьи

Категории