Оценка случайности алгоритмов хэш-функций с помощью тестов NIST

Xesh funksiya algoritmlari tasodifiyligini NIST testlari bilan baholash

Авторы

  • Oybek Umurzaqov Toshkent axborot texnologiyalari universiteti Samarqand filiali
  • I.R. Rahmatullayev
  • E.I. Saydullayev

Ключевые слова:

Xesh funksiyalari, Kriptografiya, Tasodifiylik, Kolliziya, NIST STS testi, SHA-1, SHI-3, Xavfsizlik, Autentifikatsiya, Raqamli imzo

Аннотация

Ushbu maqolada zamonaviy kriptografiyada muhim ahamiyatga ega bo'lgan xesh funksiyalari algoritmlarining tasodifiyligi va kolliziyalarga chidamliligi baholanadi. Xesh algoritmlari ma’lumotlarning yaxlitligi va autentifikatsiyasini ta'minlash uchun qo'llaniladi. Ular xesh qiymatlarini hisoblash orqali ma'lumotlarning asl va ishonchli ekanligini tasdiqlaydi. Maqolada NIST (Standartlar va Texnologiyalar Milliy Instituti) tomonidan ishlab chiqilgan statistik testlar yordamida turli xesh algoritmlari, jumladan, SHI-1, SHI-2, SHI-3 va SHA-1 ning tasodifiylik darajasi baholanadi. Natijalar SHI-3 algoritmining yuqori darajadagi xavfsizlik va tasodifiylikka ega ekanligini ko'rsatadi, SHA-1 algoritmi esa ba'zi zaif tomonlarini namoyon etadi. Ushbu tahlillar xesh algoritmlarining umumiy xavfsizlik darajasini baholashda va ularning amaliyotda qo'llanishini tahlil qilishda muhim ahamiyatga ega.

Библиографические ссылки

Church, “An unsolvable problem of elementary number theory”, American Journal of Mathematics, 58 (1936), 345–363.

Barbeau,E.J. Polynomials 1st edition, Springer (2003)

Case, M. ”A beginners guide to the general number field sieve” (2003)

Crandall,R. Pomerance,C, Prime Numbers, 2nd edition, Springer (2010)

Hoffstein,J. An introduction to Mathematical Cryptography, 2nd edition, Springer (2010)

Lehmer, D.H, Powers, R.E “On Factoring Large Numbers”. Bulletin of the American Mathematical Society. 37(10): 770-776, (1931)

Mckee J. Speeding Fermat's Factoring Method. American Mathematical Society. Mathematics Computation. Volume 68, Number 228, P. 1729-1737

Mollins, R. A brief history of factoring and primality testing B.C. (before computers) Mathematics Magazine), (2002).

Morrison, M. Brillhart, J. A Method of Factoring and the Factorization of Ϝ7. Mathematics of computation, volume 29, number 129, pages 183-205, January (1975).

Nisha,S. Farik,M. RSA Public Key Cryptography Algorithm – A review. International Journal of Scientific & Technology Research. 6, (2017)

Pollard, J.M. A Monte Carlo method for factorization. BIT 15, 331-334 (1975).

Pomerance, C. Analysis and Comparison of Some Integer Factoring Algorithms, in Computational Methods in Number Theory, Part 1, H.W. Lenstra, Jr. and R. Tijdeman, eds. Math. Centre Tract 154, p 89-139. Amsterdam, (1982)

Rabah, K. Review of Methods for Integer Factorization Applied to Cryptography. Journal of Applied Sciences.6. p461, (2006)

Schnorr, C.P, Factoring Integers and Computing Discrete Logarithms via Diophantine Approximation. In: Davies D.W. (eds) Advances in Cryptology. Lecture Notes in Computer Science, Vol 547. Springer, Berlin, Heidelberg, (1991).

Bressoud, D. M. Factorization and Primality Testing. — N. Y.: Springer-Verlag, 1989. — 260 p. — ISBN 0-387-97040-1.

Опубликован

2024-10-19

Как цитировать

Umurzaqov, O., Rahmatullayev, I., & Saydullayev, E. (2024). Оценка случайности алгоритмов хэш-функций с помощью тестов NIST: Xesh funksiya algoritmlari tasodifiyligini NIST testlari bilan baholash. Потомки Аль-Фаргани, 1(3), 6–14. извлечено от http://al-fargoniy.uz/index.php/journal/article/view/448